精英家教网 > 高中数学 > 题目详情
精英家教网如图,在四棱锥S-ABCD中,底面ABCD为矩形,SA⊥平面ABCD,二面角S-CD-A的平面角为45°,M为AB中点,N为SC中点.
(1)证明:MN∥平面SAD;
(2)证明:平面SMC⊥平面SCD;
(3)若
CDAD
,求实数λ的值,使得直线SM与平面SCD所成角为30°.
分析:(1)取SD中点E,连接AE,NE,由三角形中位线定理,及M为AB中点,可证明四边形AMNE为平行四边形,则MN∥AE,由线面平行的判定定理即可得到MN∥平面SAD;
(2)由已知中SA⊥平面ABCD,底面ABCD为矩形可得,SA⊥CD,AD⊥CD,由线面垂直的判定定理可得CD⊥平面SAD,则∠SDA即为二面角S-CD-A的平面角,结合已知中二面角S-CD-A的平面角为45°,可得△SAD为等腰直角三角形,则AE⊥SD,结合CD⊥AE及线面垂直的判定定理,可得AE⊥平面SCD,则MN⊥平面SCD,最终由面面垂直的判定定理可得
平面SMC⊥平面SCD
(3)若
CD
AD
,设AD=SA=a,则CD=λa,结合(2)的结论,可得∠MSN即为直线SM与平面SCD所成角,等于30°,解三角形SAM,即可求出λ值.
解答:证明:(1)取SD中点E,连接AE,NE,
NE=
1
2
CD=AM,NE∥CD∥AM

∴四边形AMNE为平行四边形,∴MN∥AE…(1分)
又∵MN?平面SAD…(3分)
(2)∵SA⊥平面ABCD,∴SA⊥CD,∵底面ABCD为矩形,∴AD⊥CD,
又∵SA∩AD=A,∴CD⊥平面SAD,∴CD⊥SD∴∠SDA即为二面角S-CD-A的平面角,
即∠SDA=45°…(5分)∴△SAD为等腰直角三角形,∴AE⊥SD∵CD⊥平面SAD,∴CD⊥AE,
又SD∩CD=D,∴AE⊥平面SCD∵MN∥AE,∴MN⊥平面SCD,∵MN?平面SMC,∴平面SMC⊥平面SCD…(8分)
(3)∵
CD
AD
,设AD=SA=a,则CD=λa
由(2)可得MN⊥平面SCD,∴SN即为SM在平面SCD内的射影∴∠MSN即为直线SM与平面SCD所成角,
即∠MSN=30°…(9分)
而MN=AE=
2
2
a
,∴Rt△SAM中,SM=
a2+(λa)2
,而MN=AE=
2
2
a
,∴Rt△SAM中,由sin∠MSN=
MN
SN
1
2
=
2
2
a
a2+(λa)2
,解得λ=2
当λ=2时,直线SM与平面SCD所成角为30°(14分)
点评:本题考查的知识点是平面与平面垂直的判定,直线与平面平行的判定,直线与平面所成的角,其中熟练掌握空间直线与平面平行、垂直、夹角的定义、判定、性质是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E为BS的中点,CE=
2
,AS=
3
,求:
(Ⅰ)点A到平面BCS的距离;
(Ⅱ)二面角E-CD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点
(1)求证:EF∥平面SAD
(2)设SD=2CD,求二面角A-EF-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,SA⊥底面ABCD,∠BAD=∠ABC=90°,SA=AB=AD=
1
3
BC=1
,E为SD的中点.
(1)若F为底面BC边上的一点,且BF=
1
6
BC
,求证:EF∥平面SAB;
(2)底面BC边上是否存在一点G,使得二面角S-DG-A的正切值为
2
?若存在,求出G点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E,F分别为AB,SC的中点.
(1)证明EF∥平面SAD;
(2)设SD=2DC,求二面角A-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,平面SAD⊥平面ABCD.底面ABCD为矩形,AD=
2
a,AB=
3
a
,SA=SD=a.
(Ⅰ)求证:CD⊥SA;
(Ⅱ)求二面角C-SA-D的大小.

查看答案和解析>>

同步练习册答案