设函数h(x)=x|x|+mx+n给出下列四个命题:
①当m=0时,h(x)=0只有一个实数根;
②当n=0时,y=h(x)为偶函数;
③函数y=h(x)图象关于点(0,n)对称;
④当m≠0,n≠0时,方程h(x)=0有两个不等实根.
上述命题中,正确命题的序号是_________
科目:高中数学 来源:上海市奉贤区2011届高三12月调研测试数学文科试题 题型:044
设h(x)=x+,x∈[,5],其中m是不等于零的常数,
(1)m=1时,直接写出h(x)的值域
(2)求h(x)的单调递增区间;
(3)已知函数f(x)(x∈[a,b]),定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π],当m=1时,|h1(x)-h2(x)|≤n恒成立,求n的取值范围;
查看答案和解析>>
科目:高中数学 来源:江苏省无锡市辅仁高级中学2012届高三第一次模拟考试数学文科试题 题型:044
对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a·f1(x)+b·f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(Ⅰ)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由;
第一组:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+);
第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;
(Ⅱ)设f1(x)=log2x,f2(x)=logx,a=2,b=1,生成函数h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围;
(Ⅲ)设f1(x)=x,f2(x)=(1≤x≤10),取a=1,b>0,生成函数h(x)使h(x)≥b恒成立,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源:江苏省无锡市辅仁高级中学2012届高三第一次模拟考试数学理科试题 题型:044
对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a·f1(x)+b·f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(Ⅰ)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由;
第一组:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+);
第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;
(Ⅱ)设f1(x)=log2x,f2(x)=logx,a=2,b=1,生成函数h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围;
(Ⅲ)设f1(x)=x,f2(x)=(1≤x≤10),取a=1,b>0,生成函数h(x)使h(x)≥b恒成立,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com