精英家教网 > 高中数学 > 题目详情
(2011•普陀区三模)(理)已知函数f(x)=
ln(2-x2)|x+2|-2

(1)试判断f(x)的奇偶性并给予证明;
(2)求证:f(x)在区间(0,1)单调递减;
(3)右图给出的是与函数f(x)相关的一个程序框图,试构造一个公差不为零的等差数列{an},使得该程序能正常运行且输出的结果恰好为0.请说明你的理由.
分析:(1)先求出函数的定义域,得到定义域关于原点对称,在检验-x与x的函数值之间的关系,得到奇函数.
(2)根据单调性的定义,设出已知大小关系的任意两个变量,利用定义证明函数的单调性,得到函数是一个增函数.
(3)由程序框图知,公差不为零的等差数列{an}要满足条件,则必有f(a1)+f(a2)+…+f(a10)=0.所以要构造满足条件的等差数列{an},可利用等差数列的性质,只需等差数列{an}满足:a1+a10=a2+a9═a5+a6=0.
解答:解:(1)由
2-x2>0
|x+2|-2≠0

x∈(-
2
,0)∪(0,
2
)

f(x)=
ln(2-x2)
x
,任取 x∈(-
2
,0)∪(0,
2
)

都有f(-x)=-
ln(2-x2)
x
=-f(x),则该函数为奇函数.
(2)任取0<x1<x2<1,
则有0<x12<x22<1⇒2-x12>2-x22>1,⇒ln(2-x12)>ln(2-x22)>0.
1
x1
1
x2
>1

所以
ln(2-
x
2
1
)
x1
ln(2-
x
2
2
)
x2

即f(x1)>f(x2),
故函数f(x)在区间(0,1)上单调递减.
(3)由程序框图知,公差不为零的等差数列{an}要满足条件,
则必有f(a1)+f(a2)+…+f(a10)=0.
由(1)知函数f(x)是奇函数,而奇函数的图象关于原点对称,
所以要构造满足条件的等差数列{an},可利用等差数列的性质,只需等差数列{an}
满足:a1+a10=a2+a9═a5+a6=0
an∈(-
2
,0)∪(0,
2
)
即可.
我们可以先确定a5,a6使得a5+a6=0,因为公差不为零的等差数列{an}必是单调的数列,只要它的最大项和最小项在 (-
2
,0)∪(0,
2
)
中,即可满足要求.
所以只要a5,a6
对应的点尽可能的接近原点.如取a5=-0.1,a6=0.1,存在满足条件的一个等差数列{an}可以是an=0.2n-1.1(1≤n≤10,n∈N*).
点评:本题主要考查函数的奇偶性、单调性,以及借助于程序框图考查等差数列的有关性质,解题的关键是看清题目的实质,抓住解题的主要方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•普陀区三模)(理)已知函数f(x)=
sinπxx∈[0,1]
log2011xx∈(1,+∞)
若满足f(a)=f(b)=f(c),(a、b、c互不相等),则a+b+c的取值范围是
(2,2012)
(2,2012)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•普陀区三模)(理)极坐标平面内一点A的极坐标为(3,-4),则点A到极点O的距离|OA|=
3
3

查看答案和解析>>

同步练习册答案