精英家教网 > 高中数学 > 题目详情
已知函数
(1)若函数f(x)在[1,+∞)上单调递增,求实数a的取值范围.
(2)记函数g(x)=x2[f′(x)+2x-2],若g(x)的最小值是-6,求函数f(x)的解析式.
【答案】分析:(1)由,知在[1,+∞)上恒成立,构造函数,利用导数性质,能求出实数a的取值范围.
(2)由g(x)=2x3+ax-2,x>0,知g′(x)=6x2+a,由a≥0时,g′(x)≥0恒成立知a<0,由此能求出函数f(x)的解析式.
解答:(本小题满分14分)
解:(1)
在[1,+∞)上恒成立…(2分)

恒成立,
∴h(x)在[1,+∞)单调递减…(4分)
h(x)max=h(1)=0…(6分)
∴a≥0,
故实数a的取值范围为[0,+∞).…(7分)
(2)g(x)=2x3+ax-2,x>0
∵g′(x)=6x2+a…(9分)
当a≥0时,g′(x)≥0恒成立,
∴g(x)在(0,+∞)单调递增,无最小值,不合题意,
∴a<0.…(11分)
令g′(x)=0,则(舍负)
∵0<x<时,g′(x)<0;x>时,g′(x)>0,
∴g(x)在 上单调递减,在上单调递增,
是函数的极小值点..…(13分)
解得a=-6,
.…(14分)
点评:本题考查函数是增函数时实数的取值范围的求法,考查函数的解析式的求法,解题时要认真审题,仔细解答,注意导数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年山东省青岛市高三3月统一质量检测考试(第二套)理科数学试卷(解析版) 题型:解答题

已知函数

1的最

2当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省高三上学期10月月考文科数学卷 题型:选择题

已知函数的定义域为,部分函数值如表所示,其导函数的图象如图所示,若正数满足,则的取值范围是(  )

-3

0

6

1

1

 

 

 

 

 

A.            B.           C.    D.

 

查看答案和解析>>

科目:高中数学 来源:2014届湖南省高一12月月考数学 题型:解答题

(本题满分14分)定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。

已知函数

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界函数值,求实数的取值范围;

(3)若,求函数上的上界T的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2014届湖南省高一12月月考数学 题型:解答题

(本题满分14分)定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。

已知函数

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界函数值,求实数的取值范围;

(3)若,求函数上的上界T的取值范围。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分

)已知函数                                       ,(>0),若函

    数的最小正周期为

(1)求的值,并求函数的最大值;

(2)若0<x<,当f(x)=时,求的值.

查看答案和解析>>

同步练习册答案