精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,底面是边长为的正方形,侧面
底面,且分别为的中点.

(1)求证:平面;   
(2)求证:面平面
(3)在线段上是否存在点,使得二面角的余弦值为?说明理由.
(1)详见解析;(2)详见解析;(3)线段上存在点,使得二面角的余弦值为.

试题分析:(1)连接经过点,利用中位线得到,再由直线与平面平行的判定定理得到
平面;(2)利用平面与平面垂直的性质定理结合侧面底面得到平面,从而得到,再由勾股定理证明,结合直线与平面垂直的判定定理证明平面,最后利用平面与平面垂直的判定定理得到平面平面;(3)取的中点,连接
利用平面与平面垂直的性质定理证明平面,然后以点为坐标原点,所在直线分别为轴、轴、轴建立空间直角坐标系,利用空间向量法解决题中二面角问题.
(1)证明:连接,由正方形性质可知,相交于的中点
也为中点,中点.
所以在中,
平面平面
所以平面
(2)证明:因为平面平面,平面  
为正方形,平面,所以平面
平面,所以.
,所以是等腰直角三角形,且,即.
,且,所以.
,所以面
(3)取的中点,连接,因为,所以
又侧面底面,平面平面,所以平面.
分别为的中点,所以
是正方形,故.
为原点,建立空间直角坐标系
则有
若在上存在点,使得二面角的余弦值为,连接

,由(2)知平面的法向量为
设平面的法向量为.则,即,解得
,得
所以,解得(舍去).
所以,线段上存在点,使得二面角的余弦值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(1)求证:AB1⊥面A1BD;
(2)求二面角A-A1D-B的余弦值;
(3)求点C到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体中,的中点,的中点.
(1)求证:平面平面
(2)求证:平面
(3)设为正方体棱上一点,给出满足条件的点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以下说法中,正确的个数是( )
①平面内有一条直线和平面平行,那么这两个平面平行
②平面内有两条直线和平面平行,那么这两个平面平行
③平面内有无数条直线和平面平行,那么这两个平面平行
④平面内任意一条直线和平面都无公共点,那么这两个平面平行
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面边长为8的正方形,四条侧棱长均为.点分别是棱上共面的四点,平面平面平面.
证明:
,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同直线, 是三个不同平面,则下列正确的是( )
A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2013·郑州模拟]设α,β,γ为三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n?γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.
①α∥γ,n?β;②m∥γ,n∥β;③n∥β,m?γ.
可以填入的条件有(  )
A.①或②B.②或③
C.①或③D.①或②或③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

两直线垂直,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正方体的棱长是,则直线间的距离为      

查看答案和解析>>

同步练习册答案