精英家教网 > 高中数学 > 题目详情
以下说法中,正确的个数是( )
①平面内有一条直线和平面平行,那么这两个平面平行
②平面内有两条直线和平面平行,那么这两个平面平行
③平面内有无数条直线和平面平行,那么这两个平面平行
④平面内任意一条直线和平面都无公共点,那么这两个平面平行
A.0个B.1个C.2个D.3个
B

试题分析:由面面平行的判定定理,则可知①②③错,由面面平行的定义知④对。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知四边形ABCD 是矩形,PA⊥平面ABCD,M, N分别是AB, PC的中点.
(1)求证:MN∥平面PAD;
(2)求证:MN⊥DC;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在如图所示的多面体中,四边形都为矩形。

(Ⅰ)若,证明:直线平面
(Ⅱ)设分别是线段的中点,在线段上是否存在一点,使直线平面?请证明你的结论。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图4,四边形为正方形,平面于点,交于点.

(1)证明:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是边长为的正方形,侧面
底面,且分别为的中点.

(1)求证:平面;   
(2)求证:面平面
(3)在线段上是否存在点,使得二面角的余弦值为?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2013·辽宁高考)如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.

(1)求证:平面PAC⊥平面PBC.
(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面平面是正方形,是矩形,且的中点.
(1)求与平面所成角的正弦值;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同的直线,是一个平面,则下列说法正确的是(     )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为异面直线,平面,平面.平面α与β外的直线满足,则( )
A.,且B.,且
C.相交,且交线垂直于D.相交,且交线平行于

查看答案和解析>>

同步练习册答案