精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
在如图所示的多面体中,四边形都为矩形。

(Ⅰ)若,证明:直线平面
(Ⅱ)设分别是线段的中点,在线段上是否存在一点,使直线平面?请证明你的结论。
(1)证明详见解析;(2)存在,M为线段AB的中点时,直线平面.

试题分析:(1)证直线垂直平面,就是证直线垂直平面内的两条相交直线.已经有了,那么再在平面内找一条直线与BC垂直.据题意易得,平面ABC,所以.由此得平面.(2)首先连结,取的中点O.考虑到分别是线段的中点,故在线段上取中点,易得.从而得直线平面.

试题解析:(Ⅰ)因为四边形都是矩形,
所以.
因为AB,AC为平面ABC内的两条相交直线,
所以平面ABC.
因为直线平面ABC内,所以.
又由已知,为平面内的两条相交直线,
所以,平面.

(2)取线段AB的中点M,连接,设O为的交点.
由已知,O为的中点.
连接MD,OE,则MD,OE分别为的中位线.
所以,
连接OM,从而四边形MDEO为平行四边形,则.
因为直线平面平面
所以直线平面.
即线段AB上存在一点M(线段AB的中点),使得直线平面.
【考点定位】空间直线与平面的位置关系.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,,底面为直角梯形,,点在棱上,且
(1)求异面直线所成的角;
(2)求证:平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正三棱柱ABC-A1B1C1的底面边长为8,侧棱长为6,D为AC中点。

(1)求证:直线AB1∥平面C1DB;
(2)求异面直线AB1与BC1所成角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱柱中,底面是等腰梯形,是线段的中点.

(Ⅰ)求证:
(Ⅱ)若垂直于平面,求平面和平面所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是两条不同的直线,是两个不重合的平面,给定下列四个命题:
①若,则
②若,则
③若,则
④若,则.
其中真命题的序号为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以下说法中,正确的个数是( )
①平面内有一条直线和平面平行,那么这两个平面平行
②平面内有两条直线和平面平行,那么这两个平面平行
③平面内有无数条直线和平面平行,那么这两个平面平行
④平面内任意一条直线和平面都无公共点,那么这两个平面平行
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面边长为8的正方形,四条侧棱长均为.点分别是棱上共面的四点,平面平面平面.
证明:
,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同直线, 是三个不同平面,则下列正确的是( )
A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,BC边上存在点Q,使得PQ⊥QD,则实数a的取值范围是________.

查看答案和解析>>

同步练习册答案