精英家教网 > 高中数学 > 题目详情
如图,在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,BC边上存在点Q,使得PQ⊥QD,则实数a的取值范围是________.
[2,+∞)
如图,连接AQ,∵PA⊥平面AC,

∴PA⊥QD,又PQ⊥QD,PQ∩PA=P,
∴QD⊥平面PQA,于是QD⊥AQ,
∴在线段BC上存在一点Q,使得QD⊥AQ,
等价于以AD为直径的圆与线段BC有交点,
≥1,a≥2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在如图所示的多面体中,四边形都为矩形。

(Ⅰ)若,证明:直线平面
(Ⅱ)设分别是线段的中点,在线段上是否存在一点,使直线平面?请证明你的结论。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2011•浙江)如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2
(1)证明:AP⊥BC;
(2)在线段AP上是否存在点M,使得二面角A﹣MC﹣β为直二面角?若存在,求出AM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2013·辽宁高考)如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.

(1)求证:平面PAC⊥平面PBC.
(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD,BC的中点.
(1)求证:MQ∥平面PAB;
(2)若AN⊥PC,垂足为N,求证:MN⊥PD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,为正三角形,且平面平面

(1)证明:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为正方形,平面,已知为线段的中点.
(1)求证:平面
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2012·辽宁高考]已知正三棱锥P-ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两相互垂直,则球心到截面ABC的距离为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在四棱锥中,底面.底面为梯形,,.若点是线段上的动点,则满足的点的个数是 

查看答案和解析>>

同步练习册答案