精英家教网 > 高中数学 > 题目详情

在△ABC中,“cosA=2sinBsinC”是“△ABC为钝角三角形”的


  1. A.
    必要非充分条件
  2. B.
    充分非必要条件
  3. C.
    充要条件
  4. D.
    既非充分又非必要条件
B
分析:先判别充分性,根据三角函数相关知识和恒等变换容易得到cos(B-C)=0,从而得到即B或C为钝角,充分性成立,再判别必要性,显然由“△ABC为钝角三角形”推不出条件“cosA=2sinBsinC”,故必要性不成立.
解答:先证充分性:
∵2sinBsinC=cosA=-cos(B+C)=sinBsinC-cosBcosC,即cos(B-C)=0,
∴B-C=90°或-90°,
∴B或C为钝角,
∴“cosA=2sinBsinC”是“△ABC为钝角三角形”的充分条件;
但是,ABC为钝角三角形显然导不出cos(B-C)=0这么强的条件,
故“cosA=2sinBsinC”不是“△ABC为钝角三角形”的必要条件,
则“cosA=2sinBsinC”是“△ABC为钝角三角形”的充分不必要条件.
故选B
点评:此题考查了三角形形状的判断,涉及的知识有必要条件、充分条件与充要条件的判别,以及三角函数相关知识.在证明充分性时,灵活运用诱导公式,以及两角和与差的余弦函数公式把已知的等式进行变形,得出B-C的度数是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知向量
m
=(2a-c,b)与向量
n
=(cosB,-cosC)互相垂直.
(1)求角B的大小;
(2)求函数y=2sin2C+cos(B-2C)的值域;
(3)若AB边上的中线CO=2,动点P满足
AP
=sin2θ•
AO
+cos2θ•
AC
(θ∈R)
,求(
PA
+
PB
)•
PC
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB边上的中线CO=4,若动点P满足
PA
=sin2
θ
2
OA
+cos2
θ
2
CA
(θ∈R)
,则(
PA
+
PB
)•
PC
的最小值是
-8
-8

查看答案和解析>>

科目:高中数学 来源: 题型:

ABC中,已知,求.

ww w.ks 5u.co m

查看答案和解析>>

科目:高中数学 来源: 题型:

ABC中,已知,求.

ww w.ks 5u.co m

查看答案和解析>>

科目:高中数学 来源:2013年吉林省实验中学高考数学二模试卷(文科)(解析版) 题型:填空题

在△ABC中,AB边上的中线CO=4,若动点P满足,则的最小值是   

查看答案和解析>>

同步练习册答案