精英家教网 > 高中数学 > 题目详情

已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2,若?x∈R,f(x)<0或g(x)<0,则m的取值范围是


  1. A.
    (-1,5)
  2. B.
    (-4,0)
  3. C.
    (-5,-1)
  4. D.
    (-4,-1)
B
分析:通过g(x)=2x-2≥0时,x≥1,根据题意有f(x)=m(x-2m)(x+m+3)<0在x>1时成立,根据二次函数的性质可求满足的条件,即可求解m的取值范围.
解答:∵g(x)=2x-2,当x≥1时,g(x)≥0,
又∵?x∈R,f(x)<0或g(x)<0
∴此时f(x)=m(x-2m)(x+m+3)<0在x≥1时恒成立
则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面

∴-4<m<0
故选B.
点评:本题主要考查了全称命题与特称命题的成立,指数函数与二次函数性质的应用是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=m-
1
1+ax
(a>0且a≠1,x∈R)满足f(-x)=-f(x)
(1)求m的值;
(2)当a=2时,求f(1)的值,并解不等式0<f(x2-x-2)
1
6

(3)沿着射线y=-x(x≥0)的方向将f(x)的图象平移
2
2
个单位,得到g(x)的图象,求g(x)并求g(-2)+g(-1)+g(0)+g(1)+g(2)+g(3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f 1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且f(x)=
f1(x),f1(x)≤f2(x)
f2(x),f1(x)>f2(x)

(1)当a=1时,求f(x)的解析式;
(2)在(1)的条件下,若方程f(x)-m=0有4个不等的实根,求实数m的范围;
(3)当2≤a<9时,设f(x)=f2(x)所对应的自变量取值区间的长度为l(闭区间[m,n]的长度定义为n-m),试求l的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=esinx-ksinx.
(Ⅰ)若k=e,试确定函数f(x)的单调递增区间;
(Ⅱ)若对于任意x∈R,f(x)>0恒成立,试确定实数k的取值范围;
(Ⅲ)若函数g(x)=f(x)+f(-x)-m在x∈[
π
4
4
]
上有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2,若满足对于任意x∈R,f(x)<0和g(x)<0至少有一个成立.则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=m-
1
1+ax
(a>0且a≠1,x∈R)满足f(-x)=-f(x)
(1)求m的值;
(2)当a=2时,求f(1)的值,并解不等式0<f(x2-x-2)
1
6

(3)沿着射线y=-x(x≥0)的方向将f(x)的图象平移
2
2
个单位,得到g(x)的图象,求g(x)并求g(-2)+g(-1)+g(0)+g(1)+g(2)+g(3)的值.

查看答案和解析>>

同步练习册答案