精英家教网 > 高中数学 > 题目详情

(本题满分15分)

已知函数,设, .

(Ⅰ)试确定的取值范围,使得函数上为单调函数;

(Ⅱ)试判断的大小并说明理由;

(Ⅲ)求证:对于任意的,总存在,满足,并确定这样的的个数.

(本题满分15分)

已知函数,设, .

(Ⅰ)试确定的取值范围,使得函数上为单调函数;

(Ⅱ)试判断的大小并说明理由;

(Ⅲ)求证:对于任意的,总存在,满足,并确定这样的的个数.

解:(Ⅰ)因为

;由,

所以 上递增,在上递减

要使上为单调函数,则       -------------4分

(Ⅱ)因为上递增,在上递减,

处有极小值, 又

上的最小值为

     从而当时,,即         -------------8分

(Ⅲ)证:∵,又∵

,   令,从而问题转化为证明方程=0在上有解,并讨论解的个数-------------9分

   ∵,

,      ---------------- 10分

时,,

所以上有解,且只有一解      ---------------- 11分

②当时,,但由于,

所以上有解,且有两解        ------------------- 12分

③当时,,故上有且只有一解;

时,,

所以上也有且只有一解               ------------------- 13分

综上所述, 对于任意的,总存在,满足,

且当时,有唯一的适合题意;

时,有两个适合题意.                           --------------14分

(说明:第(3)题也可以令,,然后分情况证明在其值域内,并讨论直线与函数的图象的交点个数即可得到相应的的个数)

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011年江苏省如皋市五校高二下学期期中考试理科数学 题型:解答题

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省招生适应性考试文科数学试卷(解析版) 题型:解答题

(本题满分15分)设函数

(Ⅰ)若函数上单调递增,在上单调递减,求实数的最大值;

(Ⅱ)若对任意的都成立,求实数的取值范围.

注:为自然对数的底数.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省温州市十校联合体高三上学期期初摸底文科数学 题型:解答题

(本题满分15分)已知直线与曲线相切

1)求b的值;

2)若方程上恰有两个不等的实数根,求

①m的取值范围;

②比较的大小

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省温州市十校联合体高三上学期期中考试文科数学 题型:解答题

(本题满分15分)已知抛物线),焦点为,直线交抛物线两点,是线段的中点,

  过轴的垂线交抛物线于点

  (1)若抛物线上有一点到焦点的距离为,求此时的值;

  (2)是否存在实数,使是以为直角顶点的直角三角形?若存在,求出的值;若不存在,说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省六校高三第一次联考文科数学 题型:解答题

(本题满分15分)

已知函数

(1)求的单调区间;

(2)设,若上不单调且仅在处取得最大值,求的取值范围.

 

查看答案和解析>>

同步练习册答案