精英家教网 > 高中数学 > 题目详情
计算:log2100×log0.12=
 
考点:对数的运算性质
专题:计算题,函数的性质及应用
分析:应用对数换底公式即可化简求值.
解答: 解:log2100×log0.12
=
lg100
lg2
×
lg2
lg0.1

=-2.
故答案为:-2.
点评:本题主要考察了对数的运算性质,考察了换底公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数z1=1+bi,z2=-2+i,若
z1
z2
的对应点位于直线x+y=0上,则实数b的值为(  )
A、-3
B、3
C、-
1
3
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
1
3
,则cos(π+2α)的值为(  )
A、
7
9
B、-
7
9
C、
2
9
D、-
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x<-2或x>3},B={x|log4(x+a)<1},若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简下列各式:
(1)
a
1
2
-b
1
2
a
1
2
+b
1
2
+
a
1
2
+b
1
2
a
1
2
-b
1
2

(2)(a2-2+a-2)÷(a2-a-2).

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
2lg(lga100)
2+lg(lga)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)对定义域D的每一个x1,都存在唯一的x2∈D,使f(x1)f(x2)=1成立,则称f(x)为“自倒函数”,下列命题正确的是
 
.(把你认为正确自倒函数命题的序号都填上)
(1)f(x)=sinx+
2
(x∈[-
π
2
π
2
])是自倒函数;  
(2)自倒函数f(x)的值域可以是R;
(3)自倒函数f(x)的可以是奇函数;
(4)若y=f(x),y=g(x)都是自倒函数,且定义域相同,则y=f(x)•g(x)是自倒函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M在点N的左侧),且|MN|=3.
(Ⅰ)求圆C的方程;
(Ⅱ)过点M任作一条直线与椭圆Γ:
x2
4
+
y2
8
=1相交于两点A、B,连接
AN、BN,求证:∠ANM=∠BNM.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面ABCD为等腰梯形,AB∥DC,AC⊥BD,AC与BD相交于点O,且顶点P在底面上的射影恰为O点,又BO=2,PO=
2
,PB⊥PD.
(1)求异面直接PD与BC所成角的余弦值;
(2)求二面角P-AB-C的大小;
(3)设点M在棱PC上,且
PM
PC
=λ,问λ为何值时,PC⊥平面BMD.

查看答案和解析>>

同步练习册答案