精英家教网 > 高中数学 > 题目详情

(1)已知cos(2α+β)+5cosβ=0,求tan(α+β)·tanα的值;

   (2)已知,求的值。


解析:

:从变换角的差异着手。∵ 2α+β=(α+β)+α,β=(α+β)-α

∴ 8cos[(α+β)+α]+5cos[(α+β)-α]=0

展开得:13cos(α+β)cosα-3sin(α+β)sinα=0

同除以cos(α+β)cosα得:tan(α+β)tanα=

以三角函数结构特点出发∵

∴ tanθ=2∴

注;齐次式是三角函数式中的基本式,其处理方法是化切或降幂。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知tanα=2,求2sin2α-3sinαcosα-2cos2α的值.
(2)已知-
π
2
<x<0,sinx+cosx=
1
5
,求
1
1+sinx
+
1
1+cosx
和sinx-cosx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:
(1)已知cos(α-
β
2
)
=-
4
5
,sin(β-
α
2
)=
5
13
,且
π
2
<α<π,0<β<
π
2
,求cos
α+β
2
的值;
(2)已知tanα=4
3
,cos(α+β)=-
11
14
,α、β均为锐角,求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知cosα=
1
7
,cos(α-β)=
13
14
,且0<β<α<
π
2
,求β的值.
(2)已知A+B=
π
4
,求证:(1+tanA)(1+tanB)=2.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求值:
(1)已知cos(α-
β
2
)
=-
4
5
,sin(β-
α
2
)=
5
13
,且
π
2
<α<π,0<β<
π
2
,求cos
α+β
2
的值;
(2)已知tanα=4
3
,cos(α+β)=-
11
14
,α、β均为锐角,求cosβ的值.

查看答案和解析>>

同步练习册答案