【题目】如图所示,在直三棱柱ABC-A1B1C1中,CA=4,CB=4,CC1=2,∠ACB=90°,点M在线段A1B1上.
(1)若A1M=3MB1,求异面直线AM和A1C所成角的余弦值;
(2)若直线AM与平面ABC1所成角为30°,试确定点M的位置.
【答案】(1);(2)线段A1B1的中点.
【解析】
试题分析:本题考查用空间向量法解决立体几何问题,最简单的方法是建立空间直角坐标系,如以C为坐标原点,分别以CA,CB,CC1所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,写出各点坐标,(1)求得相应向量,异面直线AM和A1C所成角的余弦值就是cos〈,〉的绝对值;(2)先求得平面ABC1的法向量为n,因为点M在线段A1B1上,可设M(x,4-x,2),利用法向量n与向量的夹角(锐角)与直线和平面所成的角互余可得,即由|cos〈n,〉|=可求得,从而确定的位置.
试题解析:方法一 (坐标法)
以C为坐标原点,分别以CA,CB,CC1所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则C(0,0,0),A(4,0,0),A1(4,0,2),B1(0,4,2).
(1)因为A1M=3MB1,所以M(1,3,2).
所以=(4,0,2),=(-3,3,2).
所以cos〈,〉==-.
所以异面直线AM和A1C所成角的余弦值为.
(2)由A(4,0,0),B(0,4,0),C1(0,0,2),
知=(-4,4,0),=(-4,0,2).
设平面ABC1的法向量为n=(a,b,c),
由得
令a=1,则b=1,c=,
所以平面ABC1的一个法向量为n=(1,1,).
因为点M在线段A1B1上,所以可设M(x,4-x,2),
所以=(x-4,4-x,2).
因为直线AM与平面ABC1所成角为30°,
所以|cos〈n,〉|=sin 30°=.
由|n|=|n||||cos〈n,〉|,得
|1 (x-4)+1 (4-x)+2|
=2,
解得x=2或x=6.
因为点M在线段A1B1上,所以x=2,
即点M(2,2,2)是线段A1B1的中点.
方法二 (选基底法)
由题意得CC1⊥CA,CA⊥CB,CC1⊥CB,取,,作为一组基底,
则有||=||=4,||=2,
且===0.
(1)由=3,则===-,
∴=+=+-,
且||=
=--,且||=2,
∴=4
∴cos〈,〉==.
即异面直线AM与A1C所成角的余弦值为.
(2)设A1M=λA1B1,则=+λ-λ.
又=-,=-,
设面ABC1的法向量为n=x+y+z,
则=8z-16x=0,=16y-16x=0,
不妨取x=y=1,z=2,
则n=++2且|n|=8,
||=,=16,
又AM与面ABC1所成的角为30°,则应有
==,
得λ=,即M为A1B1的中点.
科目:高中数学 来源: 题型:
【题目】经市场调查,某门市部的一种小商品在过去的20天内的日销售量(件)与价格(元)均为时间(天)的函数,且日销售量近似满足函数(件),而且销售价格近似满足于(元).
(1)试写出该种商品的日销售额与时间的函数表达式;
(2)求该种商品的日销售额的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是圆内一个定点,是圆上任意一点.线段的垂直平分线和半径相交于点.
(Ⅰ)当点在圆上运动时,点的轨迹是什么曲线?并求出其轨迹方程;
(Ⅱ)过点作直线与曲线交于、两点,点关于原点的对称点为,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(Ⅰ)证明PA//平面BDE;
(Ⅱ)求二面角B—DE—C的平面角的余弦值;
(Ⅲ)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com