精英家教网 > 高中数学 > 题目详情
设集合,B={x|g(x)=lg(4x-x2)}.
(1)集合C=,若a∈B,且a∉C,试求实数a的取值范围;
(2)若命题P:m∈A,命题Q:m∈B,且“P且Q”为假,“P或Q”为真,试求实数m的取值范围.
【答案】分析:(1)由题意可得A=[2,4),B=(0,4),从而可得可求,由a∈B,且a∉C可求a的范围
(2)由题意可得P:2≤m<4,命题Q:0<m<4,由“P且Q”为假,“P或Q”为真,则P,Q中一真一假,分别求解m的范围,即可
解答:解:(1)由题意可得A={x|}=[2,4),B={x|4x-x2>0}=(0,4)
当2≤x<4时,,从而可得
…(3分)
∵a∈B,且a∉C
∴a∈(0,4)且
…(6分)
(2)由题意可得P:2≤m<4,命题Q:0<m<4
“P且Q”为假,“P或Q”为真,则P,Q中一真一假…(7分)
①若P真Q一假则有解得:m∈ϕ…(9分)
②若P真Q一假则有解得:0<m<2…(11分)
综上所述m的取值范围为(0,2)…(12分)
点评:本题主要考查了含有根式及对数函数的定义域、值域的求解,P且Q,P或Q的复合命题的真假判断的应用,属于函数知识的简单应用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设偶函数y=f(x)和奇函数y=g(x)的图象如图所示:集合A={x|f(g(x)-t)=0}与集合B={x|g(f(x)-t)=0}的元素个数分别为a,b,若
1
2
<t<1,则a+b的值不可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+1,g(x)=x2-2x+1.
(1)设集合A={x|f(x)=7},集合B={x|g(x)=4},求A∩B;
(2)设集合C={x|f(x)≤a},集合D={x|g(x)≤4},若D⊆C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|y=
x-2
4-x
}
,B={x|g(x)=lg(4x-x2)}.
(1)集合C={y|y=
2
x-1
,x∈A}
,若a∈B,且a∉C,试求实数a的取值范围;
(2)若命题P:m∈A,命题Q:m∈B,且“P且Q”为假,“P或Q”为真,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省福州市八县(市)一中高三(上)期中数学试卷(文科)(解析版) 题型:解答题

设集合,B={x|g(x)=lg(4x-x2)}.
(1)集合C=,若a∈B,且a∉C,试求实数a的取值范围;
(2)若命题P:m∈A,命题Q:m∈B,且“P且Q”为假,“P或Q”为真,试求实数m的取值范围.

查看答案和解析>>

同步练习册答案