精英家教网 > 高中数学 > 题目详情
设不等式组
x>0
y>0
y≤-nx+3n
所表示的平面区域为Dn,记Dn内的格点(格点即横坐标和纵坐标皆为整数的点)的个数为f(n)(n∈N*).
(1)求f(1)、f(2)的值及f(n)的表达式;
(2)设bn=2nf(n),Sn为{bn}的前n项和,求Sn
(3)记Tn=
f(n)f(n+1)
2n
,若对于一切正整数n,总有Tn≤m成立,求实数m的取值范围.
画出
x>0
y>0
y≤-nx+3n
的可行域

精英家教网

(1)f(1)=2+1=3
f(2)=3+2+1=6
当x=1时,y=2n,可取格点2n个;当x=2时,y=n,可取格点n个
∴f(n)=3n
(2)由题意知:bn=3n•2n
Sn=3•21+6•22+9•23+…+3(n-1)•2n-1+3n•2n
∴2Sn=3•22+6•23+…+3(n-1)•2n+3n•2n+1
∴-Sn=3•21+3•22+3•23+…3•2n-3n•2n+1
=3(2+22+…+2n)-3n•2n+1
=3•
2-2n+1
1-2
-3n2n+1

=3(2n+1-2)-3nn+1
∴-Sn=(3-3n)2n+1-6
Sn=6+(3n-3)2n+1
(3)Tn=
f(n)f(n+1)
2n
=
3n(3n+3)
2n

Tn+1
Tn
=
(3n+3)(3n+6)
2n+1
3n(3n+3)
2n
=
n+2
2n
当n=1时,
n+2
2n
>1
当n=2时,
n+2
2n
=1
当n≥3时,
n+2
2n
<1

∴T1<T2=T3>T4>…>Tn
故Tn的最大值是T2=T3=
27
2

∴m≥
27
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设不等式组
|x|-2≤0
y-3≤0
x-2y≤2
所表示的平面区域为S,则S的面积为
 
;若A、B为S内的两个点,则|AB|的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在平面直角坐标系上,设不等式组
x>0
y>0
y≤-m(x-3)
(n∈N*
所表示的平面区域为Dn,记Dn内的整点(即横坐标和纵坐标均
为整数的点)的个数为an(n∈N*).
(Ⅰ)求a1,a2,a3并猜想an的表达式再用数学归纳法加以证明;
(Ⅱ)设数列{an}的前项和为Sn,数列{
1
Sn
}的前项和Tn
是否存在自然数m?使得对一切n∈N*,Tn>m恒成立.若存在,
求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设不等式组
x>0
y>0
y≤-nx+4n
(n∈N*)
所表示的平面区域Dn的整点(即横坐标和纵坐标均为整数的点)个数为an,则
1
2010
(a2+a4+…+a2010)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•茂名二模)在平面直角坐标系上,设不等式组
x>0
y≥0
y≤-2n(x-3)
(n∈N*)表示的平面区域为Dn,记Dn内的整点(横坐标和纵坐标均为整数的点)的个数为an
(1)求出a1,a2,a3的值(不要求写过程);
(2)证明数列{an}为等差数列;
(3)令bn=
1
anan+1
(n∈N*),求b1+b2+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•宣武区一模)设不等式组
x>0
y>0
y≤-nx+3n
所表示的平面区域为Dn,记Dn内的整点个数为an(n∈N*).(整点即横坐标和纵坐标均为整数的点)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记数列{an}的前n项和为Sn,且Tn=
Sn
3•2n-1
,若对于一切的正整数n,总有Tn≤m,求实数m的取值范围.

查看答案和解析>>

同步练习册答案