精英家教网 > 高中数学 > 题目详情

记集合T={0,1,2,3,4,5,6},M=,将M中的元素按从大到小的顺序排列,则第2005个数是                        (    )

    A.                B.

    C.                D.

解析:用表示k位p进制数,将集合M中的每个数乘以74,得

   

    M′中的最大数为[6666]7=[2400]10.

    在十进制数中,从2400起从大到小顺序排列的第2005个数是2400-2004=396,而[396]10=[1104]7将此数除以74,便得M中的数.故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

记集合T={0,1,2,3,4,5,6},M={
a1
7
+
a2
72
+
a3
73
+
a4
74
|ai∈T,i=1,2,3,4}
,将M中的元素按从大到小的顺序排列,则第2009个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

记集合T={0,1,2,3,4,5,6,7},ai(i=1,2,3,4)是T中可重复选取的元素.
(1)若将集合M={a1×83+a2×82+a3×8+a4|ai∈T,i=1,2,3,4}中所有元素按从小到大的顺序排列,求第2008个数所对应的ai(i=1,2,3,4)的值;
(2)若将集合N={
a1
8
+
a2
82
+
a3
83
+
a4
84
|ai∈T,i=1,2,3,4}中所有元素按从大到小的顺序排列,求第2008个数所对应的ai(i=1,2,3,4)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

记集合T={0,1,2,3,4,5,6},M={
a1
7
+
a2
72
+
a3
73
+
a4
74
|ai∈T,i=1,2,3,4}
,将M中的元素按从大到小的顺序排列,则第2011个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

记集合T={0,1,2,3,4,5,6,7,8,9},M={
a1
10
+
a2
102
+
a3
103
+
a4
104
|ai∈T,i=1,2,3,4}
,将M中的元素按从大到小排列,则第2013个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州一模)记集合T={0,1,2,3,4,5,6},M={
a1
7
+
a2
72
+
a3
73
+
a4
74
|ai∈T,i=1,2,3,4}
,将M中的元素按从大到小顺序列,则第2005个数是
396
2401
396
2401

查看答案和解析>>

同步练习册答案