精英家教网 > 高中数学 > 题目详情
(2011•广州一模)记集合T={0,1,2,3,4,5,6},M={
a1
7
+
a2
72
+
a3
73
+
a4
74
|ai∈T,i=1,2,3,4}
,将M中的元素按从大到小顺序列,则第2005个数是
396
2401
396
2401
分析:理解集合描述法的含义.根据M中元素的取值发现规律,类似于7进制的问题,然后根据7进制进行转换即可.
解答:解:M={
1
74
(a1×73+a2×72+a3×7+a4)|ai∈T,i=1,2,3,4
},
其中a1×73+a2×72+a3×7+a4
可以看出是7进制数(a1a2a3a47
则最大的数为(6666)7=74-1=2400,
按从大到小顺序列,第2005个数是2400-2004=396,
即从1起从小到大排的第396个数,
396=73+72+4,即(1104)7,故原数是
1
7
+
1
72
+
0
73
+
4
74
=
396
2401

故答案为:
396
2401
点评:本题考查集合的方法比较新颖,集合问题关键是要理解集合中所表示的元素是什么.对于规律型的问题,关键是要找到规律所表示的是什么,如本题中的7进制与10进制之间的转换.本题难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广州一模)已知定义域为R的函数f(x)满足①f(x)+f(x+2)=2x2-4x+2,②f(x+1)-f(x-1)=4(x-2),若f(t-1),-
12
,f(t)
成等差数列,则t的值为
2或3
2或3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州一模)若对一切θ∈R,复数z=(a+cosθ)+(2a-sinθ)i的模不超过2,则实数a的取值范围为
[-
5
5
5
5
]
[-
5
5
5
5
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州一模)在甲、乙等7个选手参加的一次演讲比赛中,采用抽签的方式随机确定每个选手的演出顺序(序号为1,2,…7),求:
(1)甲、乙两个选手的演出序号至少有一个为奇数的概率;
(2)甲、乙两选手之间的演讲选手个数ξ的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州一模)设各项均为正数的数列{an}的前n项和为Sn,已知数列{
Sn
}
是首项为1,公差为1的等差数列.
(1) 求数列{an}的通项公式;
(2)令bn=
1
anS2n+1
+
an+1S2n-1
,若不等式
n
i=1
bi
L
2n+1
+1
对任意n∈N*都成立,求实数L的取值范围.

查看答案和解析>>

同步练习册答案