精英家教网 > 高中数学 > 题目详情
已知某几何体的直观图和三视图如下图所示,其正视图、侧视图均为直角三角形,俯视图为直角梯形。
(1)M为AC中点,证明:BM⊥平面PAC:
(2)设直线PD与平面PAC所成的角的正弦值为,求过P-ACD的外接球的体积。
解:(1)证明:由三视图可知PA⊥平面ABCD,
即BM⊥PA,
又AB=BC,且M是AC的中点,
即BM⊥AC,
所以BM⊥平面PAC。
(2)连接BM延长交AD于E,即E为AD的中点,
又取PA中点为F,连接MF,EF∥PD,
即PD与平面PAC所成的角,转化为EF与平面PAC 所成的角,
∠MFE为EF与平面PAC所成的角,
又AC⊥CD,PA⊥CD,
所以PC⊥CD
过P-ACD的外接球的球心为PD的中点,
外接球的半径
外接球体积为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知某几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.
精英家教网精英家教网
(Ⅰ)若M为CB中点,证明:MA∥平面CNB1
(Ⅱ)求这个几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•钟祥市模拟)已知某几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.

(1)求证:BN⊥平面C1B1N;
(2)θ 为直线C1N与平面CNB1所成的角,求sinθ 的值
(3)设M为AB中点,在BC边上找一点P,使MP∥平面CNB1并求
BPPC
的值

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的直观图与它的三视图,其中俯视图为正三角形,其它两个视图是矩形.已知D是这个几何体的棱A1C1上的中点.

(Ⅰ)求出该几何体的体积;
(Ⅱ)求证:直线BC1∥平面AB1D;
(Ⅲ)求证:直线B1D⊥平面AA1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形
(1)求证:BC∥平面C1B1N;
(2)求证:BN⊥平面C1B1N;
(3)设M为AB中点,在BC边上找一点P,使MP∥平面CNB1,并求
BPPC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乐山一模)已知某几何体的直观图和三视图如图所示,其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.
(Ⅰ)证明:BN⊥平面C1NB1
(Ⅱ)求平面CNB1与平面C1NB1所成角的余弦值;

查看答案和解析>>

同步练习册答案