精英家教网 > 高中数学 > 题目详情

过点(-1,0)作抛物线yx2x+1的切线,则其中一条切线为

[  ]
A.

2xy+2=0

B.

3xy+3=0

C.

xy+1=0

D.

xy+1=0

答案:D
解析:

  =2x+1,设切点坐标为(x0y0),则切线的斜率为2x0+1,且y0x02x0+1,于是切线方程为yx02x0-1=(2x0+1)(xx0).

  因为点(-1,0)在切线上,可解得x0=0或-2,代入可验证D正确,选D.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知点D(0,-2),过点D作抛线C1:x2=2py(p>0)的切线l,切点A在第一象限,如图.
(1)求切点A的纵坐标;
(2)若离心率为
3
2
的椭圆C:
y2
a 2
+
x2
b2
=1(a>b>0)恰好经过切点A,设切线l交椭圆的另一点为B,记切线l,OA,OB的斜率分别为k,k2,k3,若2k1+k2=3k,求抛物线C1和椭圆C2的方程.
(3)设P、Q分别是(2)中的椭圆C2的右顶点和上顶点,M是椭圆C2在第一象限的任意一点,求四边形OPMQ面积的最大值以及此时M点的坐标.

查看答案和解析>>

科目:高中数学 来源:山东省实验中学2011届高三5月针对性练习数学理综试题 题型:044

已知点D(0,-2),过点D作抛线C1:x2=2py(p>0)的切线l,切点A在第一象限,如图.

(1)求切点A的纵坐标;

(2)若离心率为的椭圆恰好经过切点A,设切线l交椭圆的另一点为B,记切线l,OA,OB的斜率分别为k,k1,k2,若2k1+k2=3k,求抛物线C1和椭圆C2的方程.

(3)设P、Q分别是(2)中的椭圆C2的右顶点和上顶点,M是椭圆C2在第一象限的任意一点,求四边形OPMQ面积的最大值以及此时M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,过抛物线y2=2px(p>0)上一定点P(x0,y0)(y0>0),作两条直线分别交抛的线于A(x1,y1)、B(x2,y2).

(1)求该抛物线上纵坐标为的点到其焦点F的距离;

(2)当PA与PB的斜率存在且倾斜角互补时,求的值,并证明直线AB的斜率是非零常数.

查看答案和解析>>

同步练习册答案