精英家教网 > 高中数学 > 题目详情

已知F1F2是椭圆的左、右焦点,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足(O是坐标原点),若椭圆的离心率等于

(1)求直线AB的方程;

(2)若三角形ABF2的面积等于,求椭圆的方程;

答案:
解析:

  解:(1)由知,由直AB经过原点,

  又由,因为椭圆的离心率等于

  所以,故椭圆方程  2分

  设A(xy),由,知xc

  ∴A(cy),代入椭圆方程得,  4分

  故直线AB的斜率

  因此直线AB的方程为  6分

  (2)连结AF1BF1AF2BF2,由椭圆的对称性可知

  ,   8分

  所以,又由,解得

  故椭圆的方程为


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点,若在椭圆上存在一点P,使∠F1PF2=120°,则椭圆离心率的范围是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的两个焦点,若椭圆上存在点P使得∠F1PF2=120°,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆的两个焦点.△F1AB为等边三角形,A,B是椭圆上两点且AB过F2,则椭圆离心率是
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 F1、F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点,椭圆上存在一点P,使得SF1PF2=
3
b2
,则该椭圆的离心率的取值范围是
[
3
2
,1)
[
3
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
2
+y2=1
的两个焦点,点P是椭圆上一个动点,那么|
PF1
+
PF2
|
的最小值是(  )

查看答案和解析>>

同步练习册答案