精英家教网 > 高中数学 > 题目详情
【选修4--5;不等式选讲】
设a,b,c均为正数,且a+b+c=1,证明:
(Ⅰ)ab+bc+ca≤
1
3

(Ⅱ)
a2
b
+
b2
c
+
c2
a
≥1
分析:(Ⅰ)依题意,由a+b+c=1⇒(a+b+c)2=1⇒a2+b2+c2+2ab+2bc+2ca=1,利用基本不等式可得3(ab+bc+ca)≤1,从而得证;
(Ⅱ)利用基本不等式可证得:
a2
b
+b≥2a,
b2
c
+c≥2b,
c2
a
+a≥2c,三式累加即可证得结论.
解答:证明:(Ⅰ)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca得:
a2+b2+c2≥ab+bc+ca,
由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,
所以3(ab+bc+ca)≤1,即ab+bc+ca≤
1
3

(Ⅱ)因为
a2
b
+b≥2a,
b2
c
+c≥2b,
c2
a
+a≥2c,
a2
b
+
b2
c
+
c2
a
+(a+b+c)≥2(a+b+c),即
a2
b
+
b2
c
+
c2
a
≥a+b+c.
所以
a2
b
+
b2
c
+
c2
a
≥1.
点评:本题考查不等式的证明,突出考查基本不等式与综合法的应用,考查推理论证能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
(1)已知x、y都是正实数,求证:x3+y3≥x2y+xy2
(2)设不等的两个正数a、b满足a3-b3=a2-b2,求a+b的取值范围.

查看答案和解析>>

同步练习册答案