精英家教网 > 高中数学 > 题目详情
【选修4-5:不等式选讲】
(1)已知x、y都是正实数,求证:x3+y3≥x2y+xy2
(2)设不等的两个正数a、b满足a3-b3=a2-b2,求a+b的取值范围.
分析:(1)作差(x3+y3)-(x2y+xy2)后化积,利用综合法对乘积的符号进行判断,即可证得结论成立;
(2)从已知a3-b3=a2-b2出发,利用a>0,b>0,a≠b,结合基本不等式可求得3(a+b)2-4(a+b)<0,从而可求a+b的取值范围.
解答:(1)证明:∵(x3+y3)-(x2y+xy2
=x2(x-y)+y2(y-x)
=(x-y)(x2-y2
=(x-y)2(x+y)
又x、y都是正实数,
∴(x-y)2≥0、x+y>0,即(x3+y3)-(x2y+xy2)≥0
∴x3+y3≥x2y+xy2
(2)∵a3-b3=a2-b2
∴(a-b)(a2+ab+b2)=(a-b)(a+b),
又a≠b,故a-b≠0,
∴a2+ab+b2=a+b,
即(a+b)2-ab=a+b,又a>0,b>0,a≠b,
∴ab=(a+b)2-(a+b)<(
a+b
2
)
2

∴3(a+b)2-4(a+b)<0,
∴0<a+b<
4
3
点评:本题考查综合法证明不等式,考查等价转化思想与基本不等式的应用,考查推理与证明能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
已知函数f(x)=|x-2|,g(x)=-|x+3|+m.
(1)当m=2时,解关于x的不等式g(x)≥0;
(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
已知实数x,y,z满足x2+y2+z2=1.
(Ⅰ)求x+2y+2z的取值范围;
(Ⅱ)若不等式|a-3|+
a2
≥x+2y+2z
对一切实数x,y,z恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5、不等式选讲】
关于x的不等式lg(|x+3|-|x-7|)<m.
(Ⅰ)当m=1时,解此不等式;
(Ⅱ)设函数f(x)=lg(|x+3|-|x-7|),当m为何值时,f(x)<m恒成立?

查看答案和解析>>

同步练习册答案