精英家教网 > 高中数学 > 题目详情
【选修4-5:不等式选讲】
已知函数f(x)=|x-2|,g(x)=-|x+3|+m.
(1)当m=2时,解关于x的不等式g(x)≥0;
(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围.
分析:(1)由于g(x)=-|x+3|+m,m=2,利用绝对值不等式的解法即可解得不等式g(x)≥0的解集;
(2)函数f(x)的图象恒在函数g(x)图象的上方,转化为f(x)-g(x)>0恒成立,利用绝对值的几何意义求解即可.
解答:解:(1)∵当m=2时,g(x)=-|x+3|+2,
∴g(x)≥0?|x+3|≤2,
∴-5≤x≤1.
∴不等式g(x)≥0的解集为{x|-5≤x≤2};
(2)∵f(x)=|x-2|,g(x)=-|x+3|+m,函数f(x)的图象恒在函数g(x)图象的上方,
即|x-2|+|x+3|-m>0,|x-2|+|x+3|>m,
由绝对值的几何意义可知,|x-2|+|x+3|≥5.
∴m<5.
∴m的取值范围为:(-∞,5).
点评:本题考查绝对值不等式的解法,考查函数恒成立问题,通过绝对值的几何意义求解是关键,也是难点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
(1)已知x、y都是正实数,求证:x3+y3≥x2y+xy2
(2)设不等的两个正数a、b满足a3-b3=a2-b2,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
已知实数x,y,z满足x2+y2+z2=1.
(Ⅰ)求x+2y+2z的取值范围;
(Ⅱ)若不等式|a-3|+
a2
≥x+2y+2z
对一切实数x,y,z恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5、不等式选讲】
关于x的不等式lg(|x+3|-|x-7|)<m.
(Ⅰ)当m=1时,解此不等式;
(Ⅱ)设函数f(x)=lg(|x+3|-|x-7|),当m为何值时,f(x)<m恒成立?

查看答案和解析>>

同步练习册答案