精英家教网 > 高中数学 > 题目详情
【选修4-5:不等式选讲】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.
分析:(Ⅰ)由不等式 可得 ①
x<-3
(1-2x)-(-x-3)>0
,或②
-3≤x<
1
2
(1-2x)-(x+3)>0
,或③
x≥
1
2
(2x-1)-(x+3)>0
.分别解得①、②、③的解集,再取并集,
即得所求.
(Ⅱ)由 x+|2x-1|>3可得 ①
x<
1
2
x+(1-2x)>3
,或②
x≥
1
2
x+(2x-1)>3
.分别求得①、②的解集,再取并集,即得所求.
解答:解:(Ⅰ)由不等式|2x-1|-|x+3|>0,可得 ①
x<-3
(1-2x)-(-x-3)>0
,或②
-3≤x<
1
2
(1-2x)-(x+3)>0
,或③
x≥
1
2
(2x-1)-(x+3)>0

解①可得 x<-3,解②可得 x<-
2
3
,解③可得 x>4.
再把①②③的解集取并集,即得不等式的解集为 {x|x<-
2
3
,或x>4}.
(Ⅱ)由 x+|2x-1|>3可得 ①
x<
1
2
x+(1-2x)>3
,或②
x≥
1
2
x+(2x-1)>3

解①可得 x<-2,解②可得 x>
4
3

再把 ①②的解集取并集可得 {x|x<-2或x>
4
3
}.
点评:本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
(1)已知x、y都是正实数,求证:x3+y3≥x2y+xy2
(2)设不等的两个正数a、b满足a3-b3=a2-b2,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
已知函数f(x)=|x-2|,g(x)=-|x+3|+m.
(1)当m=2时,解关于x的不等式g(x)≥0;
(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
已知实数x,y,z满足x2+y2+z2=1.
(Ⅰ)求x+2y+2z的取值范围;
(Ⅱ)若不等式|a-3|+
a2
≥x+2y+2z
对一切实数x,y,z恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5、不等式选讲】
关于x的不等式lg(|x+3|-|x-7|)<m.
(Ⅰ)当m=1时,解此不等式;
(Ⅱ)设函数f(x)=lg(|x+3|-|x-7|),当m为何值时,f(x)<m恒成立?

查看答案和解析>>

同步练习册答案