精英家教网 > 高中数学 > 题目详情
已知函数
(1)解关于的不等式
(2)若的解集非空,求实数m的取值范围
(1)(3)

试题分析:解:(1)由题意原不等式可化为:
即: 由
    综上原不等式的解为
(2)原不等式等价于
,即
,所以
所以.
点评:主要是考查了根据绝对值不等式的性质来得到求解最值得到参数范围是解题的关键,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

经市场调查:生产某产品需投入年固定成本为3万元,每生产万件,需另投入流动成本为万元,在年产量不足8万件时,(万元),在年产量不小于8万件时,(万元). 通过市场分析,每件产品售价为5元时,生产的商品能当年全部售完.
(1)写出年利润(万元)关于年产量(万件)的函数解析式;
(注:年利润=年销售收入固定成本流动成本)
(2)年产量为多少万件时,在这一商品的生产中所获利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知.
(1)求极值;
(2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

夏季高山上温度从山脚起每升高100米,降低0.7℃,已知山顶的温度是14.1℃,山脚的温度是26℃,则山的相对高度是(    ) 米.
A.1800B.1700C.1600D.1500

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在区间上有定义, 若, 都有, 则称是区间的向上凸函数;若, 都有, 则称是区间的向下凸函数. 有下列四个判断:
①若是区间的向上凸函数,则是区间的向下凸函数;
②若都是区间的向上凸函数, 则是区间的向上凸函数;
③若在区间的向下凸函数且,则是区间的向上凸函数;
④若是区间的向上凸函数,, 则有

其中正确的结论个数是(    )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f(-)=       (   )
A.-     B.-        C  .  D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

海安县城有甲,乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.
(1)设在甲家租一张球台开展活动小时的收费为,在乙家租一张球台开展活动小时的收费为.试求
(2)问:小张选择哪家比较合算?为什么?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,使成立,则实数的取值范围为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若存在实常数,使得函数对其定义域上的任意实数分别满足:,则称直线的“隔离直线”.已知为自然对数的底数).
(1)求的极值;
(2)函数是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案