精英家教网 > 高中数学 > 题目详情
已知函数,数列{an}中,a1=a,an+1=f(an)(n∈N*).当a取不同的值时,得到不同的数列{an},如当a=1时,得到无穷数列1,3,,…;当a=2时,得到常数列2,2,2,…;当a=-2时,得到有穷数列-2,0.
(Ⅰ)若a3=0,求a的值;
(Ⅱ)设数列{bn}满足b1=-2,bn=f(bn+1)(n∈N*).求证:不论a取{bn}中的任何数,都可以得到一个有穷数列{an};
(Ⅲ)若当n≥2时,都有,求a的取值范围.
【答案】分析:(Ⅰ)根据,数列{an}中,a1=a,an+1=f(an)直接求解即可,先根据a3求出a2,进而求出a1
(Ⅱ)假设a为数列bn中的第i(i∈N*)项,通过bn=f(bn+1),an+1=f(an),得到ai+1=f(ai)=f(-2)=0.从而得到结论.
(Ⅲ)根据,且,得到a的取值范围,再根据当时,,确定a的取值范围.
解答:解:(Ⅰ)因为a3=0,且
所以a2=-2.同理可得,即
(Ⅱ)证明:假设a为数列bn中的第i(i∈N*)项,即a1=a=bi;则a2=f(a1)=f(bi)=bi-1;a3=f(a2)=f(bi-1)=bi-2
ai=f(ai-1)=f(b2)=b1=-2;,即ai+1=f(ai)=f(-2)=0.
故不论a取bn中的任何数,都可以得到一个有穷数列an
(Ⅲ)因为,且
所以1<a<3.
又因为当时,
,所以当1<a<3时,有
点评:本题是数列与函数的综合题,通过函数考查了数列的求值,不等式的求解,综合性比较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

((12分)已知函数.

(Ⅰ) 若数列{an}的首项为a1=1,(n??N+),求{an}的通项公式an

 (Ⅱ) 设bn=an+12+an+22+??+a2n+12,是否存在最小的正整数k,使对于任意n??N+bn<成立. 若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省金华市十校联考高一(下)期末数学试卷(解析版) 题型:解答题

已知函数,数列an满足
(1)求数列{an}的通项公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,求a2n-1-a2n+1及Tn
(3)令对一切n∈N*成立,求最小正整数m.

查看答案和解析>>

科目:高中数学 来源:2011年上海市黄浦区高考数学二模试卷(理科)(解析版) 题型:解答题

已知函数,数列{an}满足 a1=a(a≠-1,a∈R),an+1=f(an)(n∈N*).
(1)若数列{an}是常数列,求a的值;
(2)当a1=4时,记,证明数列{bn}是等比数列,并求出通项公式an

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省高三第五次模拟理数试卷(解析版) 题型:选择题

已知函数若数列{an}满足annN)且{an}是递减数列,则实数a的取值范围是(   )

A.(,1)           B.()          C.()         D.(,1)

 

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省宁波市镇海中学高三(上)期中数学试卷(文科)(解析版) 题型:填空题

已知函数,数列an满足an=f(n)(n∈N*),且an是递增数列,则实数a的取值范围是    

查看答案和解析>>

同步练习册答案