£¨2012•¾£ÖÝÄ£Ä⣩ÒÑÖªÊýÁÐ{an}¡¢{bn}£¬an£¾0£¬a1=6£¬µãAn(an£¬
an+1
)
ÔÚÅ×ÎïÏßy2=x+1ÉÏ£»µãBn£¨n£¬bn£©ÔÚÖ±Ïßy=2x+1ÉÏ£®
£¨1£©ÇóÊýÁÐ{an}¡¢{bn}µÄͨÏʽ£»
£¨2£©Èôf(n)=
an
bn
nÎªÆæÊý
nΪżÊý
£¬ÎÊÊÇ·ñ´æÔÚk¡ÊN*£¬Ê¹f£¨k+15£©=2f£¨k£©³ÉÁ¢£¬Èô´æÔÚ£¬Çó³ökÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©¶ÔÈÎÒâÕýÕûÊýn£¬²»µÈʽ
an
(1+
1
b1
)(1+
1
b2
)¡­(1+bn)
-
an-1
n-2+an
¡Ü0
³ÉÁ¢£¬ÇóÕýʵÊýaµÄȡֵ·¶Î§£®
·ÖÎö£º£¨1£©ÓɵãAn(an£¬
an+1
)
ÔÚÅ×ÎïÏßy2=x+1ÉÏ£¬Öªan+1=an+1£¬ÓÉ´ËÄÜÇó³öan=n+5£®ÓɵãBn£¨n£¬bn£©ÔÚÖ±Ïßy=2x+1ÉÏ£®ÄÜÇó³öbn=2n+1£®
£¨2£©ÓÉf(n)=
an£¬nÎªÆæÊý
bn£¬nΪżÊý
£¬Öªµ±kÎªÆæÊýʱ£¬k+15ΪżÊý£¬¹Ê2£¨k+15£©+1=2£¨k+5£©£¬ÏÔÈ»²»³ÉÁ¢£®µ±kΪżÊýʱ£¬k+15ÎªÆæÊý£¬ÔòÓÐk+20=2£¨2k+1£©£¬ÓÉ´ËÄÜÇó³ök£®
£¨3£©ÓÉ
an
(1+
1
b1
)(1+
1
b2
)¡­(1+bn)
-
an-1
n-2+an
¡Ü0
£¬µÃ£ºa¡Ü
1
2n+3
(1+
1
b1
)(1+
1
b2
)¡­(1+
1
bn
)
£¬¼Çg£¨n£©=
1
2n+3
(1+
1
b1
)(1+
1
b2
)¡­(1+
1
bn
)
£¬ÓÉ´ËÄÜÇó³öÕýʵÊýaµÄȡֵ·¶Î§£®
½â´ð£º½â£º£¨1£©¡ßµãAn(an£¬
an+1
)
ÔÚÅ×ÎïÏßy2=x+1ÉÏ£¬
¡àan+1=an+1£¬
¡ßan£¾0£¬a1=6£¬
¡à{an}ÊÇÊ×Ïîa1=6£¬¹«²îd=an+1-an=1µÄµÈ²îÊýÁУ¬
¡àan=n+5£®
¡ßµãBn£¨n£¬bn£©ÔÚÖ±Ïßy=2x+1ÉÏ£®
¡àbn=2n+1¡­£¨4·Ö£©
£¨2£©f(n)=
an£¬nÎªÆæÊý
bn£¬nΪżÊý
£¬
µ±kÎªÆæÊýʱ£¬k+15ΪżÊý£¬
¡à2£¨k+15£©+1=2£¨k+5£©£¬ÏÔÈ»²»³ÉÁ¢£®
µ±kΪżÊýʱ£¬k+15ÎªÆæÊý£¬ÔòÓÐk+20=2£¨2k+1£©£¬½âµÃk=6£®¡­£¨8·Ö£©
£¨3£©ÓÉ
an
(1+
1
b1
)(1+
1
b2
)¡­(1+bn)
-
an-1
n-2+an
¡Ü0
£¬
µÃ£ºa¡Ü
1
2n+3
(1+
1
b1
)(1+
1
b2
)¡­(1+
1
bn
)
£¬
¼Çg£¨n£©=
1
2n+3
(1+
1
b1
)(1+
1
b2
)¡­(1+
1
bn
)
£¬
Ôò
g(n+1)
g(n)
=
2n+3
2n+5
(1+
1
bn+1
)=
2n+3
2n+5
2n+4
2n+3
=
(2n+4)2
2n+5
2n+3
£¾1

¡àg£¨n+1£©£¾g£¨n£©£¬¼´g£¨n£©µÝÔö£®
¡àg(n)min=g(1)=
1
5
4
3
=
4
5
15
£¬
¼´0£¼a¡Ü
4
5
15
£®¡­£¨13·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏʽµÄÇ󷨡¢ÊµÊýkÊÇ·ñ´æÔÚµÄÅжϺÍÇóÕýʵÊýaµÄȡֵ·¶Î§£®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬ÊǸ߿¼µÄÖØµã£®½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÚ¾òÌâÉèÖеÄÒþº¬Ìõ¼þ£¬ºÏÀíµØ½øÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¾£ÖÝÄ£Ä⣩µÈ±ÈÊýÁÐ{an}ÖУ¬ÒÑÖªa2=2£¬a5=16
£¨1£©ÇóÊýÁÐ{an}µÄͨÏîan
£¨2£©ÈôµÈ²îÊýÁÐ{bn}£¬b1=a5£¬b8=a2£¬ÇóÊýÁÐ{bn}ǰnÏîºÍSn£¬²¢ÇóSn×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¾£ÖÝÄ£Ä⣩ÉèµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Èôa2+a8=15-a5£¬ÔòS9µÄֵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¾£ÖÝÄ£Ä⣩ÒÑÖªº¯Êýy=sinxµÄ¶¨ÒåÓòΪ[
5¦Ð
6
£¬b]
£¬ÖµÓòΪ[-1£¬
1
2
]
£¬Ôòb-
5¦Ð
6
µÄÖµ²»¿ÉÄÜÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¾£ÖÝÄ£Ä⣩Éè¶þ´Îº¯Êýf£¨x£©=mx2+nx+tµÄͼÏó¹ýÔ­µã£¬g£¨x£©=ax3+bx-3£¨x£¾0£©£¬f£¨x£©£¬g£¨x£©µÄµ¼º¯ÊýΪf¡ä£¨x£©£¬g¡ä£¨x£©£¬ÇÒf¡ä£¨0£©=0£¬f¡ä£¨-1£©=-2£¬f£¨1£©=g£¨1£©£¬f¡ä£¨1£©=g¡ä£¨1£©£®
£¨1£©Çóº¯Êýf£¨x£©£¬g£¨x£©µÄ½âÎöʽ£»
£¨2£©ÇóF£¨x£©=f£¨x£©-g£¨x£©µÄ¼«Ð¡Öµ£»
£¨3£©ÊÇ·ñ´æÔÚʵ³£ÊýkºÍm£¬Ê¹µÃf£¨x£©¡Ýkx+mºÍg£¨x£©¡Ükx+m£¿Èô´æÔÚ£¬Çó³ökºÍmµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸