精英家教网 > 高中数学 > 题目详情

某同学参加某高校自主招生3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为p,q(p<q),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为

(Ⅰ)求该生至少有1门课程取得优秀成绩的概率及求p,q的值;

(Ⅱ)求数学期望Eξ.

答案:
解析:

  解:用表示“该生第门课程取得优秀成绩”,=1,2,3.

  由题意得

  (Ⅰ)该生至少有一门课程取得优秀成绩的概率为

  

  (Ⅱ)

  及

  

  (2)

  

  ∴

  ∴该生取得优秀成绩的课程门数的期望为 .


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某同学参加某高校自主招生3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为
4
5
,第二、第三门课程取得优秀成绩的概率分别为p,q(p<q),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为
ξ 0 1 2 3
pi
6
125
x y
24
125
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率及求p,q的值;
(Ⅱ) 求数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某同学参加某高校自主招生3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为
4
5
,第二、第三门课程取得优秀成绩的概率分别为p,q(p<q),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为
ξ 0 1 2 3
pi
6
125
x y
24
125
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率及求p,q的值;
(Ⅱ) 求数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源:2013年山东省高考数学预测试卷(09)(解析版) 题型:解答题

某同学参加某高校自主招生3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为p,q(p<q),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为
ξ123
pixy
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率及求p,q的值;
(Ⅱ) 求数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省聊城市阳谷县华阳中学高三(下)3月月考数学试卷(理科)(解析版) 题型:解答题

某同学参加某高校自主招生3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为p,q(p<q),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为
ξ123
pixy
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率及求p,q的值;
(Ⅱ) 求数学期望Eξ.

查看答案和解析>>

同步练习册答案