【题目】已知二次函数
(
是常数,且
)满足条件:
,且方程
有两个相等实根.
(1)求
的解析式;
(2)是否存在实数
,使
的定义域和值域分别为
和
?若存在,求出
的值;若不存在,说明理由.
【答案】(1) f(x)=-
x2+x;(2)m=-2,n=0.
【解析】
(1)方程 f(x)=x,即ax2+bx=x,
亦即ax2+(b-1)x=0,
由方程有两个相等实根,得Δ=(b-1)2-4a×0=0,
∴b=1.①
由f(2)=0,得4a+2b=0②
由①、②得,a=-
,b=1,
故 f(x)=-
x2+x.
(2)假设存在实数m、n满足条件,由(1)知,
f(x)=-
x2+x=-
(x-1)2+
≤
,
则2n≤
,即n≤
.
∵ f(x)=-
(x-1)2+
的对称轴为x=1,
∴当n≤
时, f(x)在[m,n]上为增函数.
于是有
即![]()
∴m<n≤
,∴.![]()
故存在实数m=-2,n=0,
使f(x)的定义域为[m,n],值域为[2m,2n].
科目:高中数学 来源: 题型:
【题目】如图,岛
、
相距
海里.上午9点整有一客轮在岛
的北偏西
且距岛
海里的
处,沿直线方向匀速开往岛
,在岛
停留
分钟后前往
市.上午
测得客轮位于岛
的北偏西
且距岛
海里的
处,此时小张从岛
乘坐速度为
海里/小时的小艇沿直线方向前往
岛换乘客轮去
市.
![]()
(Ⅰ)若
,问小张能否乘上这班客轮?
(Ⅱ)现测得
,
.已知速度为
海里/小时(
)的小艇每小时的总费用为(
)元,若小张由岛
直接乘小艇去
市,则至少需要多少费用?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,且过点
.
(Ⅰ)求椭圆
的方程.
(Ⅱ)若
,
是椭圆
上两个不同的动点,且使
的角平分线垂直于
轴,试判断直线
的斜率是否为定值?若是,求出该值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得
=80,
=20,
=184,
=720.
(1)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;
(2)判断变量x与y之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:线性回归方程y=bx+a中,
,a=
-b
,其中
,
为样本平均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为调查某社区年轻人的周末生活状况,研究这一社区年轻人在周末的休闲方式与性别的关系,随机调查了该社区年轻人80人,得到下面的数据表:
![]()
(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的年轻男性,设调查的3人在这一时间段以上网为休闲方式的人数为随机变量X,求X的分布列和数学期望;
(2)根据以上数据,能否有99%的把握认为“周末年轻人的休闲方式与性别有关系”?
参考公式:![]()
参考数据:
| 0.05 | 0.010 |
| 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.
(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?
(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在
市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到下表(单位:人):
![]()
(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为
市使用共享单车情况与年龄有关?(Ⅱ)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.
(1)分别求这5人中经常使用、偶尔或不用共享单车的人数;
(2)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式:
,其中
.
参考数据:
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com