精英家教网 > 高中数学 > 题目详情

如图过抛物线数学公式的对称轴上一点P(0,m)(m>0)作直线l与抛物线交于A(x1,y1),B(x2,y2)两点,点Q是P关于原点的对称点,以P,Q为焦点的椭圆为C2
(1)求证:x1x2为定值;
(2)若l的方程为x-2y+4=0,且C1,C2以及直线l有公共点,求C2的方程;
(3)设数学公式,若数学公式,求证:λ=μ

解:(1)设直线l的方程为y=kx+m,
联立,得x2-4kx-4m=0,
∵直线l与抛物线交于A(x1,y1),B(x2,y2)两点,
∴x1x2=-4m.
(2)∵l的方程为x-2y+4=0,∴m=2,
∵点Q是P关于原点的对称点,
∴P(0,2),Q(0,-2),
联立,得A(-2,1),B(4,4),
∵C1,C2以及直线l有公共点,
∴C1,C2以及直线l的公共点为A(-2,1),
∵P,Q为焦点的椭圆为C2,∴设椭圆为C2的方程为
由C1,C2以及直线l的公共点为A(-2,1),
知2a==

∴椭圆为C2的方程为
(3)由,则
因为
所以

∴2m[y1-μy2+(1-μ)m]=0,
从而


(舍去)
故λ=μ.
分析:(1)设直线l的方程为y=kx+m,联立,得x2-4kx-4m=0,由此能够证明x1x2=-4m.
(2)由l的方程为x-2y+4=0,知m=2,由点Q是P关于原点的对称点,知P(0,2),Q(0,-2),联立,得A(-2,1),B(4,4),由C1,C2以及直线l有公共点,知C1,C2以及直线l的公共点为A(-2,1),由此能求出椭圆为C2的方程.
(3)由,知,因为所以,由此能够证明λ=μ.
点评:本题考查x1x2为定值的证明,求椭圆C2的方程和求证:λ=μ.考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年潮州市二模理)(14分)如图,过抛物线的对称轴上任一点作直线与抛物线交于A、B两点,点Q是点P关于原点的对称点.

 ⑴ 设点P满足为实数),证明:

⑵ 设直线AB的方程是,过A、B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

如图,过抛物线的对称轴上任一点作直线与抛物线交于两点,点是点关于原点的对称点.

(1)设点分有向线段所成的比为λ,证明

(2)设直线的方程是,过两点的圆

抛物线在点处有共同的切线,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,过抛物线的对称轴上任一点作直线与抛物线交于A、B两点,点Q是点P关于原点的对称点.

 ⑴设点P满足为实数),证明:

⑵设直线AB的方程是,过A、B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省上饶市上饶县中学高三(上)期末数学复习试卷3(解析版) 题型:解答题

如图过抛物线的对称轴上一点P(0,m)(m>0)作直线l与抛物线交于A(x1,y1),B(x2,y2)两点,点Q是P关于原点的对称点,以P,Q为焦点的椭圆为C2
(1)求证:x1x2为定值;
(2)若l的方程为x-2y+4=0,且C1,C2以及直线l有公共点,求C2的方程;
(3)设,若,求证:λ=μ

查看答案和解析>>

同步练习册答案