精英家教网 > 高中数学 > 题目详情
4.在△ABC中,内角A,B,C所对的边分别为a,b,c,且$\frac{sinA}{a}$=$\frac{\sqrt{3}cosB}{b}$,则∠B为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

分析 通过正弦定理及$\frac{sinA}{a}$=$\frac{\sqrt{3}cosB}{b}$求出tanB的值,进而求出B的值.

解答 解:由正弦定理得:$\frac{a}{sinA}=\frac{b}{sinB}$,而$\frac{sinA}{a}$=$\frac{\sqrt{3}cosB}{b}$,两式相乘得tanB=$\sqrt{3}$,
由于0<B<π,
从而B=$\frac{π}{3}$.
故选:A.

点评 本题主要考查了正弦定理的应用.属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.函数$f(x)={log_{\frac{1}{2}}}({{x^2}-4})$的单调区间是(-∞,-2)、(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.要描述一个工厂某种产品的生产步骤,应用(  )
A.工序流程图B.组织结构图C.程序框图D.知识结构图

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.过点P(-2,3)的直线被圆x2+y2-4x+2y-2=0所截,求截得的最长弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,D为BC边上的中点,求证:$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等比数列{an}的前n项和为Sn
(1)若数列{an}的前三项依次为a-1,a+1,a+4,求通项公式an
(2)若Sm、Sm+2、Sm+1成等差数列,求证:am、am+2、am+1成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线的一个焦点与抛物线x2=24y的焦点重合,其一条渐近线的倾斜角为30°,则该双曲线的方程为(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1B.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{27}$=1C.$\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{24}$=1D.$\frac{{y}^{2}}{24}$-$\frac{{x}^{2}}{12}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知A={x|x+a>0},B={x|bx<1},其中a,b均为实常数且b≠0.
(1)若A∩B={x|3<x<4},求a,b的值;
(2)若A∪B={x|x≠$\frac{1}{b}$},求a,b之间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.判断下列两个集合之间的关系.
(1)A={x|x=3k,k∈N},B={x|x=6k,k∈N}.
(2)A={x|x为4与10公倍数,x∈N+},B={x|x=20m,m∈N+}.

查看答案和解析>>

同步练习册答案