精英家教网 > 高中数学 > 题目详情
设双曲线
x2
3
-
y2
6
=1
的焦点为F1、F2,过F1作x轴的垂线与该双曲线相交,其中一个交点为M,则|
MF2
|=(  )
A.5
3
B.4
3
C.3
3
D.2
3
∵双曲线
x2
3
-
y2
6
=1中a2=3,b2=6,
∴c2=a2+b2=9,
∴c=3,故左焦点F1(-3,0).
依题意,设M(-3,y0),则
y02
6
=
(-3)2
3
-1=2,
∴y0=±2
3
,故|MF1|=2
3

∵M(-3,y0)为左支上的点,
∴|MF2|-|MF1|=2
3

∴|MF2|=2
3
+|MF1|=4
3
,即|
MF2
|=4
3

故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知离心率为
3
2
的椭圆C1的顶点A1,A2恰好是双曲线
x2
3
-y2=1
的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当k1=
1
2
时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为
4
5
5
,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
6
+
y2
2
=1
和双曲线
x2
3
-y2=1
的公共焦点分别为F1,F2,P是两曲线的一个交点,则cos∠F1PF2的值为(  )
A、
1
4
B、
1
3
C、
2
3
D、-
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
6
+
y2
2
=1与双曲线
x2
3
-y2=1有公共焦点为F1,F2,P是两条曲线的一个公共点,则cos∠F1PF2的值等于(  )
A、
1
4
B、
1
3
C、
1
9
D、
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)设F1,F2是双曲线
x2
3
-y2=1
的两个焦点,P在双曲线上,当△F1PF2的面积为2时,
PF1
PF2
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•河东区二模)设双曲线
x2
3
-
y2
6
=1
的一条准线与抛物线y2=2px(p>0)的准线重合,则此抛物线的方程为
y2=4x
y2=4x

查看答案和解析>>

同步练习册答案