精英家教网 > 高中数学 > 题目详情
(2013•重庆)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.
(1)   (2)见解析
(1)因f(x)=a(x﹣5)2+6lnx,故f′(x)=2a(x﹣5)+,(x>0),
令x=1,得f(1)=16a,f′(1)=6﹣8a,
∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣16a=(6﹣8a)(x﹣1),
由切线与y轴相交于点(0,6).
∴6﹣16a=8a﹣6,
∴a=
(2)由(1)得f(x)=(x﹣5)2+6lnx,(x>0),
f′(x)=(x﹣5)+=,令f′(x)=0,得x=2或x=3,
当0<x<2或x>3时,f′(x)>0,故f(x)在(0,2),(3,+∞)上为增函数,
当2<x<3时,f′(x)<0,故f(x)在(2,3)上为减函数,
故f(x)在x=2时取得极大值f(2)=+6ln2,在x=3时取得极小值f(3)=2+6ln3.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知
(1)证明函数上是增函数;
(2)用反证法证明方程没有负数根.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数满足(其中在点处的导数,为常数).
(1)求函数的单调区间
(2)设函数,若函数上单调,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1) 当时,讨论的单调性;
(2)设,当若对任意存在 使求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f′(x)<0,设a=f(0),b=f,c=f(3),则a,b,c的大小关系为____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知为定义在(0,+∞)上的可导函数,且恒成立,则不等式的解集为______     _____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且
(1)求的值;
(2)求函数的单调区间;
(3)设函数,若函数上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设函数R,求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=f(x)在定义域(-,3)内的图像如图所示.记y=f(x)的导函数为y=f¢(x),则不等式f¢(x)≤0的解集为(   )
A.[-,1]∪[2,3)B.[-1,]∪[]
C.[-]∪[1,2)D.(-,- ]∪[]∪[,3)

查看答案和解析>>

同步练习册答案