精英家教网 > 高中数学 > 题目详情
各项均为正数的等比数列{an}中,a2=1-a1,a4=9-a3,则a4+a5等于(  )
分析:由a2=1-a1,a4=9-a3,得a1+a2=1,a3+a4=9,由等比数列的性质可得,a1+a2,a2+a3,a3+a4,a4+a5依次构成等比数列,由此能求出a4+a5
解答:解:由a2=1-a1,a4=9-a3
得a1+a2=1,a3+a4=9,
由等比数列的性质,得a1+a2,a2+a3,a3+a4,a4+a5依次构成等比数列,
又等比数列{an}中各项均为正数,
所以a2+a3=
(a1+a2)(a3+a4)
=
1×9
=3,
∴a4+a5=27.
故选B.
点评:本题考查等比数列的通项公式和前n项和公式的应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源:云南省昆明市东川高级中学2009-2010学年高二数学上期期中质量检测试题 题型:013

各项均为正数的等比数例{an}的前n项和为Sn,若Sn=2,S3n=14,则S4n等于

[  ]
A.

16

B.

26

C.

30

D.

80

查看答案和解析>>

科目:高中数学 来源: 题型:

5.各项均为正数的等比数例{an}的前n项和为Sn,若Sn=2,S3n=14,则S4n等于(  )

(A)16                      (B)26                              (C)30                      (D )80

查看答案和解析>>

同步练习册答案