精英家教网 > 高中数学 > 题目详情
精英家教网直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,点D在AB上.
(Ⅰ)求证:AC⊥B1C;
(Ⅱ)若D是AB中点,求证:AC1∥平面B1CD;
(Ⅲ)当
BD
AB
=
1
3
时,求二面角B-CD-B1的余弦值.
分析:(I)要证明线与线垂直,根据所给的直三棱柱的侧棱与底面垂直和根据三条边长得到的勾股定理,得到线面垂直,进而得到线线垂直.
(II)要证明线面平行,根据线面平行的判定定理,首先证明线与线平行,要写清楚两条线段的位置,得到结论.
(III)以C为原点建立空间直角坐标系C-xyz,写出要用的点的坐标,构造向量,根据线段的比值,得到向量的坐标,设出法向量,求出法向量,根据向量所成的角做出二面角.
解答:精英家教网精英家教网证明:(Ⅰ)在△ABC中,因为AB=5,AC=4,BC=3,
所以AC2+BC2=AB2,所以AC⊥BC.
因为直三棱柱ABC-A1B1C1,所以CC1⊥AC.
因为BC∩AC=C,
所以AC⊥平面BB1C1C.
所以AC⊥B1C.
(Ⅱ)证明:连接BC1,交B1C于E,DE.
因为直三棱柱ABC-A1B1C1,D是AB中点,
所以侧面BB1C1C为矩形,DE为△ABC1的中位线,
所以DE∥AC1
因为DE?平面B1CD,AC1?平面B1CD,
所以AC1∥平面B1CD.
(Ⅲ)解:由(Ⅰ)知AC⊥BC,
所以如图,以C为原点建立空间直角坐标系C-xyz.
则B(3,0,0),A(0,4,0),A1(0,0,c),B1(3,0,4).
设D(a,b,0)(a>0,b>0),
因为点D在线段AB上,且
BD
AB
=
1
3
,即
BD
=
1
3
BA

所以a=2,b=
4
3
BD
 =(-1,
4
3
,0)

所以
B1C
=(3,0,4)
BA
=(-3,4,0)
CD
=(2,
4
3
,0)

平面BCD的法向量为
n 1
=(0,0,1)

设平面B1CD的法向量为
n 2
=(x,y,1)

B1C
n 2
=0
CD
n 2
=0
,得
3x+4=0
2x+
4
3
y=0

所以x=-
4
3
,y=2,
n 2
=(-
4
3
,2,1)

设二面角B-CD-B1的大小为θ,
所以cosθ=
n 1
n 2
|
n 1
||
n 2
|
=
3
61

所以二面角B-CD-B1的余弦值为
3
61
61
点评:本题考查空间中直线与平面之间的平行和垂直关系,用空间向量求解两个平面的夹角,本题解题的关键是建立坐标系,把理论的推导转化成数字的运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网直三棱柱ABC-A1B1C1中,AC=BC=BB1=1,AB1=
3

(1)求证:平面AB1C⊥平面B1CB;    
(2)求三棱锥A1-AB1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=a,直线B1C与平面ABC成30°角.
(1)求证:平面B1AC⊥平面ABB1A1;   
(2)求C1到平面B1AC的距离;   
(3)求三棱锥A1-AB1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,则BC1与平面AB B1 A1所成角的正弦值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,则BC1与平面AB B1 A1所成角的正弦值是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆八中高三(下)第二次月考数学试卷(理科)(解析版) 题型:选择题

如图,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,则BC1与平面AB B1 A1所成角的正弦值是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案