精英家教网 > 高中数学 > 题目详情

已知数学公式
(1)b=2时,求f(x)的值域;
(2)若b为正实数,f(x)的最大值为M,最小值为m,且满足:M-m≥4,求b的取值范围.

解:(1)当b=2时,
因为f(x)在上单调递减,在上单调递增,…(2分)
所以f(x)的最小值为,…(4分)
又因为f(1)=f(2)=0…(5分)
所以f(x)的值域为…(6分)
(2)①当0<b<2时,f(x)在[1,2]上单调递增,
则m=b-2,,此时,得b≤-6与0<b<2矛盾(舍去)…(8分)
②当2≤b<4时,f(x)在上单调递减,在上单调递增,
所以
,得,解得b≥9,与2≤b<4矛盾(舍去)…(11分)
③当b≥4时,f(x)在[1,2]上单调递减,
则M=b-2,,此时,得b≥10…(13分)
综上所述,b的取值范围是[10,+∞)…(14分)
分析:(1)根据对勾函数的单调性看求出该函数的最小值和最大值,从而求出值域;
(2)讨论与区间[1,2]的位置关系,然后根据函数的单调性求出f(x)的最大值为M,最小值为m,然后根据M-m≥4,求b的取值范围即可.
点评:本题主要考查了函数的最值及其几何意义,以及函数的单调性和研究函数值域,同时考查了分类讨论的数学思想和计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x+
bx
-3,x∈[1,2]

(1)b=2时,求f(x)的值域;
(2)b≥2时,f(x)>0恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若函数f(x)对于其定义域内的某一数x0,有f(x0)=x0,则称x0是f(x)的一个不动点.已知函数f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图象上两个点A、B的横坐标是函数f(x)的不动点,且A、B的中点C在函数g(x)=-x+
a
5a2-4a+1
的图象上,求b的最小值.
(参考公式:A(x1,y1),B(x2,y2)的中点坐标为(
x1+x2
2
y1+y2
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈D
,其中0<a<b.
(1)当D=(0,+∞)时,设t=
x
a
+
b
x
,f(x)=g(t),求y=g(t)的解析式及定义域;
(2)当D=(0,+∞),a=1,b=2时,求f(x)的最小值;
(3)设k>0,当a=k2,b=(k+1)2时,1≤f(x)≤9对任意x∈[a,b]恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:江苏期中题 题型:解答题

已知
(1)b=2时,求f(x)的值域;
(2)若b为正实数,f(x)的最大值为M,最小值为m,且满足:M﹣m≥4,求b的取值范围.

查看答案和解析>>

同步练习册答案