精英家教网 > 高中数学 > 题目详情
5.观察等式:13=1,13+23=9,13+23+33=36,13+23+33+43=100,…,由以上等式推测到一个一般的结论,对于n∈N*,13+23+33+…+n3=${[\frac{n(n+1)}{2}]^2}$.

分析 左边是连续自然数的立方和,右边是左边的底数的和的平方,由此得到结论.

解答 解:13=1
13+23=9=(1+2)2
13+23+33=36=(1+2+3)2
13+23+33+43=100=(1+2+3+4)2
由以上可以看出左边是连续自然数的立方和,右边是左边的底数的和的平方,
照此规律,第n个等式可为13+23+33+…+n3=${[\frac{n(n+1)}{2}]^2}$.
故答案为:${[\frac{n(n+1)}{2}]^2}$.

点评 本题考查了规律型:数字的变化.解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,AB是⊙O的直径,点C是弧$\widehat{AB}$上一点,VC垂直⊙O所在平面,D,E分别为VA,VC的中点.
(1)求证:DE⊥平面VBC;
(2)若VC=CA=6,⊙O的半径为5,求点E到平面BCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,曲线C1的参数方程为:$\left\{\begin{array}{l}{x=3cosα}\\{y=3+3sinα}\end{array}$,(α为参数),M是C1上的动点,P点满足$\overrightarrow{OP}$=2$\overrightarrow{OM}$,P点的轨迹为曲线C2
(1)求C2的参数方程;
(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=$\frac{π}{3}$与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数y=loga(x-1)+3,(a>0且a≠1)的图象恒过点P,则P的坐标是(2,3),若角α的终边经过点P,则sin2α-sin2α的值等于$-\frac{3}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线x-y+m=0与圆x2+y2=1相交的一个充分不必要条件是(  )
A.0<m<1B.-4<m<2C.m<1D.-3<m<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线l:x+my-1=0(m∈R)是圆C:x2+y2-4x-2y+1=0的对称轴,若过点A(-4,m)作圆C的一条切线,切点为B,则|AB|=(  )
A.2B.4$\sqrt{2}$C.6D.2$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在⊙O中,AB是弦,AC是⊙O的切线,A是切点,过B点作BD⊥AC于D,BD交⊙O于E点,若AE平分∠BAD,则∠BAD=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=2$\sqrt{3}$,O为AC与BD的交点,E为棱PB的中点.
(Ⅰ)证明:△EAC是等腰直角三角形;
(Ⅱ)求二面角A-CD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义:分子为1且分母为正整数的分数称为单位分数.我们可以把1分拆为若干个不同的单位分数之和.如:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,依此类推可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{n}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,其中m≤n,m,n∈N*,则m,n的值分别为(  )
A.m=13,n=20B.m=14,n=20C.m=20,n=20D.m=20,n=30

查看答案和解析>>

同步练习册答案