分析 (Ⅰ)以O为原点,OA为x轴,OB为y轴,OE为z轴,建立空间直角坐标系,利用向量法能证明△EAC是等腰直角三角形.
(Ⅱ)求出平面ACD的法向量和平面CDE的法向量,利用向量法能求出二面角A-CD-E的余弦值.
解答
证明:(Ⅰ)∵在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,
AB=2,PD=2$\sqrt{3}$,O为AC与BD的交点,E为棱PB的中点.
∴OE⊥平面ABCD,AC⊥BD,
∴以O为原点,OA为x轴,OB为y轴,OE为z轴,建立空间直角坐标系,
A($\sqrt{3}$,0,0),B(0,1,0),P(0,-1,2$\sqrt{3}$),C(-$\sqrt{3}$,0,0),E(0,0,$\sqrt{3}$),
$\overrightarrow{AE}$=(-$\sqrt{3}$,0,$\sqrt{3}$),$\overrightarrow{CE}$=($\sqrt{3}$,0,$\sqrt{3}$),$\overrightarrow{AC}$=(2$\sqrt{3}$,0,0),
|$\overrightarrow{AE}$|=$\sqrt{3+3}$=$\sqrt{6}$,|$\overrightarrow{CE}$|=$\sqrt{6}$,
∵AE=CE,AE2+CE2=12,
∴△EAC是等腰直角三角形.
解:∵平面ACD的法向量$\overrightarrow{n}$=(0,0,1),
设平面CDE的法向量$\overrightarrow{m}$=(x,y,z),
∵D(0,-1,0),$\overrightarrow{DE}$=(0,1,$\sqrt{3}$),$\overrightarrow{DC}$=(-$\sqrt{3}$,1,0),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DE}=y+\sqrt{3}z=0}\\{\overrightarrow{m}•\overrightarrow{DC}=-\sqrt{3}x+y=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}$=($\sqrt{3}$,$\sqrt{3}$,-1),
设二面角A-CD-E的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{7}}$=$\frac{\sqrt{7}}{7}$,
∴二面角A-CD-E的余弦值为$\frac{\sqrt{7}}{7}$.
点评 本题考查三角形是等腰直角三角形的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com