精英家教网 > 高中数学 > 题目详情
用与底面成45°角的平面截圆柱得一椭圆截线,则该椭圆的离心率为    
【答案】分析:根据截面与底面所成的角是45°,根据直角三角形写出椭圆的长轴长,而椭圆的短轴长是与圆柱的底面直径相等,做出c的长度,根据椭圆的离心率公式,代入a,c的值,求出结果.
解答:解:设圆柱方程为x 2+y 2=R 2
∵与底面成45°角的平面截圆柱,
∴椭圆的长轴长是R,
短轴长是R,
∴c=R,
∴e==
故答案为:
点评:本题考查平面与圆柱的截线,考查椭圆的性质,考查等腰直角三角形的边长之间的关系,是一个比较简单的综合题目,题目涉及到的知识比较多.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图四棱锥P-ABCD的底面是边长为2的菱形,且∠BAD=60°,PA⊥平面ABCD,设E为BC的中点,二面角P-DE-A为45°.
(1 ) 求点A到平面PDE的距离;
(2 ) 在PA上确定一点F,使BF∥平面PDE;
(3 ) 求平面PDE与平面PAB所成的不大于直二面角的二面角的大小(用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源:2007届武穴中学高三文科数学模拟题 题型:044

如图四棱锥P-ABCD的底面是边长为2的菱形,且∠BAD=60°,PA⊥平面ABCD,设E为BC的中点,二面角P-DE-A为45°.

(1)求点A到平面PDE的距离;

(2)在PA上确定一点F,使BF∥平面PDE;

(3)求异面直线PC与DE所成的角(用反三角函数表示);

(4)求面PDE与面PAB所成的不大于直二面角的二面角的大小(用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年宜昌一中12月月考理)(12分)

如图四棱锥P-ABCD的底面是边长为2的菱形,且∠BAD = 60°,PA⊥平面ABCD,设E为BC的中点,二面角P-DE-A为45°.

     (1 ) 求点A到平面PDE的距离;

     (2 ) 在PA上确定一点F,使BF∥平面PDE;

 (3 ) 求平面PDE与平面PAB所成的不大于直二面角的二面角的大小(用反三角函数表示)

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图四棱锥P-ABCD的底面是边长为2的菱形,且∠BAD=60°,PA⊥平面ABCD,设E为BC的中点,二面角P-DE-A为45°.
(1 ) 求点A到平面PDE的距离;
(2 ) 在PA上确定一点F,使BF∥平面PDE;
(3 ) 求平面PDE与平面PAB所成的不大于直二面角的二面角的大小(用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源:2008-2009学年湖北省宜昌一中高三(上)12月月考数学试卷(理科)(解析版) 题型:解答题

如图四棱锥P-ABCD的底面是边长为2的菱形,且∠BAD=60°,PA⊥平面ABCD,设E为BC的中点,二面角P-DE-A为45°.
(1 ) 求点A到平面PDE的距离;
(2 ) 在PA上确定一点F,使BF∥平面PDE;
(3 ) 求平面PDE与平面PAB所成的不大于直二面角的二面角的大小(用反三角函数表示).

查看答案和解析>>

同步练习册答案