精英家教网 > 高中数学 > 题目详情
[x]表示不超过x的最大整数,定义函数f(x)=x-[x].则下列结论中正确的有

①函数f(x)的值域为[0,1];
②方程f(x)=
12
有无数个解
③函数f(x)的图象是一条直线;   
④函数f(x)是R上的增函数.
分析:在解答时要先充分理解[x]的含义,从而可知针对于选项注意对新函数的最值、单调性以及周期性加以分析即可.
解答:解:∵函数f(x)的定义域为R,又∵f(x+1)=(x+1)-[x+1]=x-[x]=f(x),
∴函数{x}=x-[x]是周期为1的函数,每隔一个单位重复一次,
所以方程f(x)=
1
2
有无数个解,故②正确;
当0≤x<1时,f(x)=x-[x]=x-0=x,∴函数{x}的值域为[0,1),故①错误;
函数{x}是周期为1的函数,∴函数{x}不是单调函数,当然图象也不可能为一条直线,
故③④错误.
故答案为:②
点评:本题考查分段函数知识和函数值域等性质的综合类问题,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:函数f(x)=[x[x]](x∈R),其中[x]表示不超过x的最大整数.
如[-2.1]=-3,[-3]=-3,[2.5]=2.
(1)判断f(x)的奇偶性;
(2)若x∈[-2,3],求f(x)的值域;
(3)若x∈[0,n](n∈N*),f(x)的值域为An,现将An,中的元素的个数记为an.试求an+1与an的关系,并进一步求出an的表达式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:函数f(x)=[x[x]](x∈R),其中[x]表示不超过x的最大整数.
如[-2.1]=-3,[-3]=-3,[2.5]=2.
(1)判断f(x)的奇偶性;
(2)若x∈[-2,3],求f(x)的值域;
(3)若x∈[0,n](n∈N*),f(x)的值域为An,现将An,中的元素的个数记为an.试求an+1与an的关系,并进一步求出an的表达式.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省孝感高中高三(上)8月数学测试卷5(理科)(解析版) 题型:解答题

已知:函数f(x)=[x[x]](x∈R),其中[x]表示不超过x的最大整数.
如[-2.1]=-3,[-3]=-3,[2.5]=2.
(1)判断f(x)的奇偶性;
(2)若x∈[-2,3],求f(x)的值域;
(3)若x∈[0,n](n∈N*),f(x)的值域为An,现将An,中的元素的个数记为an.试求an+1与an的关系,并进一步求出an的表达式.

查看答案和解析>>

科目:高中数学 来源:2006-2007学年北京市宣武区高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知:函数f(x)=[x[x]](x∈R),其中[x]表示不超过x的最大整数.
如[-2.1]=-3,[-3]=-3,[2.5]=2.
(1)判断f(x)的奇偶性;
(2)若x∈[-2,3],求f(x)的值域;
(3)若x∈[0,n](n∈N*),f(x)的值域为An,现将An,中的元素的个数记为an.试求an+1与an的关系,并进一步求出an的表达式.

查看答案和解析>>

科目:高中数学 来源:2006-2007学年北京市宣武区高三(上)期末数学试卷(理科)(解析版) 题型:解答题

已知:函数f(x)=[x[x]](x∈R),其中[x]表示不超过x的最大整数.
如[-2.1]=-3,[-3]=-3,[2.5]=2.
(1)判断f(x)的奇偶性;
(2)若x∈[-2,3],求f(x)的值域;
(3)若x∈[0,n](n∈N*),f(x)的值域为An,现将An,中的元素的个数记为an.试求an+1与an的关系,并进一步求出an的表达式.

查看答案和解析>>

同步练习册答案