精英家教网 > 高中数学 > 题目详情
8.如图,在正方体中,E、F为所在棱的中点,求证:D1、E、F、B四点共面.

分析 要证:E,B,F,D1四点共面,只需证BF∥D1E即可.

解答 证明:在BB1取点M,使得BM=AE,

∵ABCD-A1B1C1D1是正方体
∴ME∥AB且ME=AB
∴ME∥C1D1且ME=C1D1
∴四边形C1D1EM是平行四边形
∴D1E∥C1M
又∵C1M∥FB且C1M=FB
∴D1E∥FB且D1E=FB
∴四边形EBFD1是平行四边形
∴E,B,F,D1四点共面

点评 此题考查学生的空间想象能力和逻辑推理能力,考查对四点共面的理解与掌握

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在正方形ABCD的边长为2,$\overrightarrow{DE}=2\overrightarrow{EC}$,$\overrightarrow{DF}=\frac{1}{2}(\overrightarrow{DC}+\overrightarrow{DB})$,则$\overrightarrow{BE}•\overrightarrow{DF}$的值为(  )
A.$\frac{2}{3}$B.$-\frac{2}{3}$C.$\frac{10}{3}$D.$-\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设F1、F2分别是双曲线C:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的左右焦点,过F2的直线交双曲线于P,Q两点,若|PQ|=10,则△PQF1的周长为32.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{3}$=1的左顶点为A、上顶点为B,光线通过点C(-1,0)射到线段AB(端点除外)上的点T,经线段AB反射,其反射光线与椭圆交于点M.若∠CTM为钝角,则T点的横坐标m的范围为(-3,$\frac{-3-\sqrt{3}}{2}$)∪($\frac{\sqrt{3}-3}{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.自驾游从A地到B地有甲乙两条线路,甲线路是A-C-D-B,乙线路是A-E-F-G-H-B,其中CD段,EF段,GH段都是易堵车路段.假设这三条路段堵车与否相互独立.这三条路段的堵车概率及平均堵车时间如表所示:
堵车时间(小时)频数
[0,1]8
(1,2]6
(2,3]38
(3,4]24
(4,5]24
经调查发现堵车概率x在($\frac{2}{3}$,1)上变化,y在(0,$\frac{1}{2}$)上变化.在不堵车的状况下,走甲路线需汽油费500元,走乙线路需汽油费545元.而每堵车1小时,需多花汽油费20元.路政局为了估计CD段平均堵车时间,调查了100名走甲线路的司机,得到如表数据.
路段         CDEFGH
堵车概率                                                                    xy$\frac{1}{4}$
平均堵车时间(小时)                                                             a21
(Ⅰ)求CD段平均堵车时间a的值,(同一组数据用该区间的中点值做代表)
(Ⅱ)若走甲、乙路线所花汽油费的期望值相等,且x=$\frac{11}{12}$,求y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知椭圆与双曲线有公共的左右焦点F1,F2,在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,设椭圆,双曲线的离心率分别为e1,e2,则e2-e1的取值范围是($\frac{2}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\frac{{e}^{x}+a}{{e}^{x}+b}$是定义在上R的奇函数,则b的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,正方形ABCD所在平面与正方形ABEF所在的平面所成的二面角为θ,AD与BF夹角的余弦值为$\frac{\sqrt{2}}{4}$,试求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知圆O:x2+y2=4,直线l:x+y-4=0,A为直线l上一点,若圆O上存在两点B、C,使得∠BAC=60°,则点A的横坐标的取值范围是[0,4].

查看答案和解析>>

同步练习册答案