精英家教网 > 高中数学 > 题目详情
已知函数为奇函数,f(1)=-3,且对任意x∈[π,2π],f(sinx-1)≥0恒成立,f(cosx+3)≥0恒成立.
(1)求b的值;
(2)求证f(2)=0,并求f(x)解析式;
(3)若对任意t∈(1,2],恒有f(tm)+f(-m-1-t2)<0,求正数m的取值范围.
【答案】分析:(1)根据函数的性质,我们易根据f(-x)=-f(x)恒成立,构造方程,解方程即可求出求b的值;
(2)由对任意x∈[π,2π],f(sinx-1)≥0恒成立,f(cosx+3)≥0恒成立我们可得f(-2)≥0且f(2)≥0结合奇函数的性质,即可得到f(2)=0,结合已知中f(1)=-3,构造方程组,解方程组即可得到f(x)解析式;
(3)根据(2)中的解析式,我们易判断在(0,+∞)是增函数,根据奇函数的性质,我们可将不等式f(tm)+f(-m-1-t2)<0恒成立,转化为一个函数恒成立问题,进而得到正数m的取值范围.
解答:解:(1)∵f(x)是奇函数,
∴f(-x)=-f(x)恒成立,即恒成立,
可得b=0(2分)
(2)∵π≤x≤2π,
∴-1≤sinx≤0,-1≤cosx≤1,
∴-2≤sinx-1≤-1,2≤cosx+3≤4
又∵f(sinx-1)≥0,f(cosx+3)≥0恒成立,
∴f(-2)≥0且f(2)≥0,
∵f(x)是奇函数,
∴由f(-2)≥0可得f(2)≤0,
∴f(2)=0(6分)
∴由,及,得c=-4,a=1,
(8分)
(3)∵f(x)是奇函数得f(tm)<f(t2+m+1),
又∵在(0,+∞)是增函数,m>0,t>0,
∴tm>0,m+1+t2>0∴tm<t2+m+1,∴(t-1)m<t2+1,(10分)
∵t∈(1,2]∴t-1>0,
在t∈(1,2]上恒成立
设k=t-1,则k∈(0,1]且t2+1=k2++2k+2,设
则g(k)在k∈(0,1]上单调递减,
∴g(k)min=g(1)=5,∴m<5,
又m>0,所以0<m<5(12分)
点评:本题的知识点是抽象函数及其应用,函数的单调性及奇偶性的综合应用,其中根据已知利用方程和函数的思想,求出函数的解析式是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数数学公式为奇函数,f(1)=-3,且对任意x∈[π,2π],f(sinx-1)≥0恒成立,f(cosx+3)≥0恒成立.
(1)求b的值;
(2)求证f(2)=0,并求f(x)解析式;
(3)若对任意t∈(1,2],恒有f(tm)+f(-m-1-t2)<0,求正数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:山东省月考题 题型:解答题

已知函数为奇函数.
(Ⅰ)证明:函数f(x)在区间(1,+∞)上是减函数;
(Ⅱ)解关于x的不等式f(1+2x2)+f(﹣x2+2x﹣4)>0.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省泰安市新泰市新汶中学高三(上)9月月考数学试卷(理科)(解析版) 题型:解答题

已知函数为奇函数,f(1)<f(3),且不等式的解集是[-2,-1]∪[2,4]
(1)求a,b,c.
(2)是否存在实数m使不等式对一切θ∈R成立?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省泰安市新泰市新汶中学高三(上)9月月考数学试卷(理科)(解析版) 题型:解答题

已知函数为奇函数,f(1)<f(3),且不等式的解集是[-2,-1]∪[2,4]
(1)求a,b,c.
(2)是否存在实数m使不等式对一切θ∈R成立?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案