精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2x+2ax(a为实数),且f(1)=
(1)求函数f(x)的解析式;
(2)判断函数f(x)的奇偶性并证明;
(3)判断函数f(x)在区间[0,+∞)的单调性,并用定义证明.

【答案】
(1)解:∵f(x)=2x+2ax(a为实数),且f(1)=

∴f(1)=2+2a= .得2a= ,即a=﹣1,

则函数f(x)的解析式f(x)=2x+2x


(2)解:f(﹣x)=2x﹣2x=﹣(2x﹣2x)=﹣f(x),

则函数f(x)是奇函数


(3)解:设0≤x1<x2,f(x1)﹣f(x2)= + =( )(1+ ),

∵y=2x是增函数,∴ <0,又1+ >0,

∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),函数f(x)是增函数


【解析】(1)根据条件利用待定系数法进行求解即可.(2)根据函数奇偶性的定义进行证明,(3)根据函数单调性的定义进行证明即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义域为R的奇函数f(x)= ,其中h(x)是指数函数,且h(2)=4.
(1)求函数f(x)的解析式;
(2)求不等式f(2x﹣1)>f(x+1)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=xex﹣ax2﹣x,a∈R.
(1)当a= 时,求函数f(x)的单调区间;
(2)若对x≥1时,恒有f(x)≥xex+ax2成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,从椭圆 上一点P向x轴作垂线,垂足恰为左焦点F1 , 又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且 . (Ⅰ) 求椭圆的方程;
(Ⅱ) 若M是椭圆上的动点,点N(4,2),求线段MN中点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】连续抛掷两次骰子,得到的点数分别为m,n,记向量 =(m,n), =(1,﹣1)的夹角为θ,则θ∈(0, )的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等比数列{an}的前n项和为Sn , 已知a1=2,且4S1 , 3S2 , 2S3成等差数列. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=|2n﹣5|an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+x2(a为实常数).
(1)当a=﹣4时,求函数f(x)在[1,e]上的最大值及相应的x值;
(2)当x∈[1,e]时,讨论方程f(x)=0根的个数.
(3)若a>0,且对任意的x1 , x2∈[1,e],都有 ,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点O,焦点在x轴上,离心率为 的椭圆过点( ).
(1)求椭圆的方程;
(2)设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,bcosC=(2a﹣c)cosB.
(1)求B;
(2)若b= ,且a+c=4,求SABC

查看答案和解析>>

同步练习册答案