精英家教网 > 高中数学 > 题目详情

(文科做)数列{an}中,a3=1,Sn=an+1(n=1,2,3…).
(I)求a1,a2
(II)求数列{an}的前n项和Sn
(III)设bn=log2Sn,存在数列{cn}使得cn•bn+3•bn+4=1,试求数列{cn}的前n项和.

解:(I)∵a1=a2,a1+a2=a3
∴2a1=a3=1,
.…2分
(II)∵Sn=an+1=Sn+1-Sn
,…6分
,公比为2的等比数列.
.(n∈N*).…9分
(III)∵bn=log2Sn,Sn=2n-2
∴bn=n-2,bn+3=n+1,bn+4=n+2,
=.…11分
.…14分
分析:(I)通过已知的关系式直接求a1,a2
(II)利用an+1=Sn+1-Sn,与已知的关系式,推出数列{Sn}是等比数列,即可求数列{an}的前n项和Sn
(III)设bn=log2Sn,求出bn的表达式,求出数列{cn}的通项公式,通过裂项法求数列{cn}的前n项和.
点评:本题是中档题,考查数列递推关系式的应用,数列通项公式的求法,前n项和的求法,考查计算能力,逻辑推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文科做)数列{an}中,a3=1,Sn=an+1(n=1,2,3…).
(I)求a1,a2
(II)求数列{an}的前n项和Sn
(III)设bn=log2Sn,存在数列{cn}使得cn•bn+3•bn+4=1,试求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•蚌埠二模)已知等差数列{an}的首项为p,公差为d(d>0).对于不同的自然数n,直线x=an与x轴和指数函数f(x)=(
12
)x
的图象分别交于点An与Bn(如图所示),记Bn的坐标为(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面积分别为s1和s2,一般地记直角梯形AnAn+1Bn+1Bn的面积为sn
(1)求证数列{sn}是公比绝对值小于1的等比数列;
(2)设{an}的公差d=1,是否存在这样的正整数n,构成以bn,bn+1,bn+2为边长的三角形?并请说明理由;
(3)(理科做,文科不做)设{an}的公差d=1,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?如果存在,给出一个符合条件的p值;如果不存在,请说明理由.(参考数据:210=1024)

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科做)已知点A1(2,0),A2(1,t),A3(0,b),A4(-1,t),A5(-2,0),其中t>0,b为正常数.
(1)半径为2的圆C1经过Ai(i=1,2,…,5)这五个点,求b和t的值;
(2)椭圆C2以F1(-c,0),F2(c,0)(c>0)为焦点,长轴长是4.若AiF1+AiF2=4(i=1,2,…,5),试用b表示t;
(3)在(2)中的椭圆C2中,两线段长的差A1F1-A1F2,A2F1-A2F2,…,A5F1-A5F2构成一个数列{an},求证:对n=1,2,3,4都有an+1<an.(本小题解答中用到了椭圆的第一定义与焦半径公式,新教材实验区的学生可不解第三小题,请学习时注意)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文科做)数列{an}中,a3=1,Sn=an+1(n=1,2,3…).
(I)求a1,a2
(II)求数列{an}的前n项和Sn
(III)设bn=log2Sn,存在数列{cn}使得cn•bn+3•bn+4=1,试求数列{cn}的前n项和.

查看答案和解析>>

同步练习册答案