精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱ABC﹣A1B1C1中,底面为正三角形,侧棱垂直底面,AB=4,AA1=6,若E,F分别是棱BB1 , CC1上的点,且BE=B1E,C1F= CC1 , 则异面直线A1E与AF所成角的余弦值为(
A.
B.
C.
D.

【答案】D
【解析】解以C为原点,CA为x轴,在平面ABC中过作AC的垂线为y轴,CC1为z轴,建立空间直角坐标系, ∵在三棱柱ABC﹣A1B1C1中,底面为正三角形,侧棱垂直底面,AB=4,AA1=6,
E,F分别是棱BB1 , CC1上的点,且BE=B1E,C1F= CC1
∴A1(4,0,6),E(2,2 ,3),F(0,0,4),A(4,0,0),
=(﹣2,2 ,﹣3), =(﹣4,0,4),
设异面直线A1E与AF所成角所成角为θ,
则cosθ= = =
∴异面直线A1E与AF所成角的余弦值为
故选:D.

以C为原点,CA为x轴,在平面ABC中过作AC的垂线为y轴,CC1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1E与AF所成角的余弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中xOy中,已知曲线E经过点P(1, ),其参数方程为 (α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线E的极坐标方程;
(2)若直线l交E于点A、B,且OA⊥OB,求证: 为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次数学测试之后,数学组的老师对全校数学总成绩分布在[105,135)的n名同学的19题成绩进行了分析,数据整理如下:

组数

分组

19题满分人数

19题满分人数占本组人数比例

第一组

[105,110]

15

0.3

第二组

[110,115)

30

0.3

第三组

[115,120)

x

0.4

第四组

[120,125)

100

0.5

第五组

[125,130)

120

0.6

第六组

[130,135)

195

y

(Ⅰ)补全所给的频率分布直方图,并求n,x,y的值;
(Ⅱ)现从[110,115)、[115,120)两个分数段的19题满分的试卷中,按分层抽样的方法抽取9份进行展出,并从9份试卷中选出两份作为优秀试卷,优秀试卷在[115,120)中的分数记为ξ,求随机变量ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差d≠0,Sn为其前n项和,若a2 , a3 , a6成等比数列,且a10=﹣17,则 的最小值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx﹣ax﹣3(a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2(f'(x)+ )在区间(t,3)上总不是单调函数,求m的取值范围;
(Ⅲ)求证: × × ×…× (n≥2,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来我国电子商务行业迎来蓬勃发展新机遇,2016年双11期间,某网络购物平台推销了A,B,C三种商品,某网购者决定抢购这三种商品,假设该名网购者都参与了A,B,C三种商品的抢购,抢购成功与否相互独立,且不重复抢购同一种商品,对A,B,C三件商品抢购成功的概率分别为a,b, ,已知三件商品都被抢购成功的概率为 ,至少有一件商品被抢购成功的概率为
(1)求a,b的值;
(2)若购物平台准备对抢购成功的A,B,C三件商品进行优惠减免,A商品抢购成功减免2百元,B商品抢购成功减免4比百元,C商品抢购成功减免6百元.求该名网购者获得减免总金额(单位:百元)的分别列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|sinx|(x∈[﹣π,π]),g(x)=x﹣2sinx(x∈[﹣π,π]),设方程f(f(x))=0,f(g(x))=0,g(g(x))=0的实根的个数分别为m,n,t,则m+n+t=(
A.9
B.13
C.17
D.21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 R上的奇函数, ,且对任意 都有 成立,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中, ,点D在线段BC上.
(1)当BD=AD时,求 的值;
(2)若AD是∠A的平分线, ,求△ADC的面积.

查看答案和解析>>

同步练习册答案