精英家教网 > 高中数学 > 题目详情
设△ABC的三内角A、B、C的对边长分别为a、b、c,已知bcosC=(2a-c)cosB.
(Ⅰ)求角B的大小;
(Ⅱ)若x∈[0,π),求函数f(x)=sin(x-B)+sinx的值域.
分析:(I)由正弦定理化简已知等式,利用两角和正弦公式得到sin(B+C)=2sinAcosB,结合sin(B+C)=sinA为正数可得cosB=
1
2
,可得角B的大小.
(II)化简得f(x)=
3
sin(x-
π
6
)
,由x∈[0,π)利用正弦函数的图象与性质,可得函数f(x)的值域.
解答:解:(Ⅰ)由已知及正弦定理,得sinBcosC=(2sinA-sinC)cosB…(2分)
移项得sinBcosC+cosBsinC=2sinAcosB,
∴sin(B+C)=2sinAcosB…(4分)
∵sin(B+C)=sinA≠0,∴2cosB=1,可得cosB=
1
2
.(5分)
∵B∈(0,π),∴B=
π
3
…(6分)
(Ⅱ)∵B=
π
3

f(x)=sin(x-
π
3
)+sinx=sinxcos
π
3
-cosxsin
π
3
+sinx

=
3
2
sinx-
3
2
cosx=
3
sin(x-
π
6
)
…(9分)
∵x∈[0,π),可得-
π
6
≤x-
π
6
6

sin(x-
π
6
)∈[-
1
2
,1]
…(11分)
故函数f(x)的值域是[-
3
2
3
]
.(12分)
点评:本题给出三角形的边角关系,求B的大小并依此求一个三角函数式的值域.着重考查了正弦定理、三角恒等变换和三角函数的图象与性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
m
=(
3
sinx,cosx),
n
=(cosx,-cosx),x∈R,定义函数f(x)=
m
n
-
1
2

(1) 求函数.f(x)的最小正周期,值域,单调增区间.
(2) 设△ABC的三内角A,B,C所对的边分别为a、b、c,且c=
3
,f(C)=0,若
d
=(1,sinA)与
e
=(2,sinB)
共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三内角A、B、C所对边的长分别为a、b、c,平面向量
m
=(cosA,cosC),
n
=(c,a),
p
=(2b,0),且
m
•(
n
-
p
)=o.
(1)求角A的大小;
(2)当|x|≤A时,求函数f(x)=
1
2
sinxcosx+
3
2
sin2x的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三内角A、B、C成等差数列,sinA=
3
2
,则这个三角形的形状是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 
m
=(
3
sinx,cosx),
n
=(cosx,-cosx),x∈R,定义函数f(x)=
m
n
-
1
2

(1)求函数f(x)的最小正周期,值域,单调增区间.
(2)设△ABC的三内角A,B,C所对的边分别为a、b、c,且c=
3
,f(C)=0,若向量
d
=(1,sinA)与 
e
=(2,sinB)共线,求边a,b的值及△ABC的面积S?

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三内角A、B、C成等差数列,三边 a,b,c成等比数列,则这个三角形的形状是(  )

查看答案和解析>>

同步练习册答案