精英家教网 > 高中数学 > 题目详情

(本小题12分)已知c>0,设p:函数在R上单调递减;q:不等式>1的解集为R,如果“p或q”为真,且“p且q”为假,求c的取值范围。

 

 

【答案】

1)由AB=2,AD=,∠BAD=30,及余弦定理得

BD2=AB2+AD2-2AB·ADcos∠BAD=1,

∵AD2+BD2=AB2,∴AD⊥BD.

∵SD⊥平面ABCD,AD平面ABCD,

∴AD⊥SD,

∴AD⊥平面SBD,又SB平面SBD,

∴AD⊥SB.

(2)取CD的中点G,连结EG,则EG⊥面BCD,且EG=1.

连AC交BD于F,连FG,则FG//BC且FG=,又BC⊥BD,∴FG⊥BD

即为所求二面角的平面角

在Rt中,

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题12分)已知,直线与函数的k*s#5^u图象都相切,且与函数的k*s#5^u图象的k*s#5^u切点的k*s#5^u横坐标为.

(Ⅰ)求直线的k*s#5^u方程及的k*s#5^u值;

(Ⅱ)若(其中的k*s#5^u导函数),求函数的k*s#5^u最大值;

(Ⅲ)当时,求证:.

查看答案和解析>>

科目:高中数学 来源:2011年四川省泸县二中高2013届春期重点班第一学月考试数学试题 题型:解答题

(本小题12分)已知等比数列中,
(1)求数列的通项公式;
(2)设等差数列中,,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源:2011云南省潞西市高二上学期期末考试数学试卷 题型:解答题

(本小题12分)

已知顶点在原点,焦点在轴上的抛物线与直线交于P、Q两点,|PQ|=,求抛物线的方程

 

查看答案和解析>>

科目:高中数学 来源:2010年浙江省杭州市七校高二上学期期中考试数学文卷 题型:解答题

(本小题12分)

已知圆C:

(1)若直线且与圆C相切,求直线的方程.

(2)是否存在斜率为1直线,使直线被圆C截得弦AB,以AB为直径的圆经过原点O. 若存在,求

    出直线的方程;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2012届山东省兖州市高二下学期期末考试数学(文) 题型:解答题

(本小题12分)已知函数

(1)       求这个函数的导数;

(2)       求这个函数的图像在点处的切线方程。

 

查看答案和解析>>

同步练习册答案