【题目】联欢会有歌曲节目4个,舞蹈节目2个,小品节目2个,其中小品节目不能连着演出,舞蹈必须在开头和结尾,有多少种不同的出场顺序( )
A.480
B.960
C.720
D.180
科目:高中数学 来源: 题型:
【题目】若关于x的方程x2+ax+a2﹣a﹣2=0的一根大于1,另一根小于1,则a的取值范围为( )
A.0<a<1
B.a>﹣1
C.﹣1<a<1
D.a<1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有八名运动员参加男子100米的决赛.已知运动场有从内到外编号依次为1,2,3,4,5,6,7,8的八条跑道,若指定的3名运动员所在的跑道编号必须是三个连续的数字(如:4,5,6),则参加比赛的这八名运动员安排跑道的方式共有( )
A.360种
B.4320种
C.720种
D.2160种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用数学归纳法证明“1+2+3+…+(2n+1)=(n+1)(2n+1)”时,由n=k(k>1)等式成立,推证n=k+1,左边应增加的项为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)满足f(1+x)+f(1﹣x)=0,且f(﹣x)=f(x),当1≤x≤2时,f(x)=2x﹣1,求f(2017)( )
A.﹣1
B.0
C.1
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中:
①“x0∈R,x02﹣x0+1≤0”的否定;
②“若x2+x﹣6≥0,则x>2”的否命题;
③命题“若x2﹣5x+6=0,则x=2”的逆否命题;
其中真命题的个数是( )
A.0个
B.1个
C.2个
D.3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f,g都是由A到A的映射,其对应法则如下表(从上到下):
表1 映射f的对应法则
原像 | 1 | 2 | 3 | 4 |
像 | 3 | 4 | 2 | 1 |
表2 映射g的对应法则
原像 | 1 | 2 | 3 | 4 |
像 | 4 | 3 | 1 | 2 |
则与f[g(1)]相同的是( )
A.g[f(1)]
B.g[f(2)]
C.g[f(3)]
D.g[f(4)]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com