精英家教网 > 高中数学 > 题目详情
18.已知(1-2x)n(n∈N+)的展开式中第三项和第八项的二项式系数相等,则展开式所有项的系数和为(  )
A.1B.-1C.0D.2

分析 根据题意求出n的值,再令x=1求出二项式展开式中所有项的系数和.

解答 解:(1-2x)n(n∈N+)的展开式中第三项和第八项的二项式系数相等,
即${C}_{n}^{2}$=${C}_{n}^{7}$,∴n=2+7=9;
∴(1-2x)9的展开式中所有项的系数和为:
(1-2×1)9=-1.
故选:B.

点评 本题考查了二项式定理的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知正四棱台上、下底面的边长分别为4、10,侧棱长为6.
(1)求正四棱台的表面积;
(2)求正四棱台的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知定认在R上的可导函数f(x)的导函数f′(x),若对于任意实数x,有f′(x)<f(x),且y=f(x)-1为奇函数,则不等式f(x)<ex的解集为(  )
A.(0,+∞)B.(-∞,0)C.(-∞,e4D.(e4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设两个非零向量$\overrightarrow{a}$,$\overrightarrow{b}$不共线.
(1)如$\overrightarrow{AB}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{BC}$=-3($\overrightarrow{a}$-$\overrightarrow{b}$),$\overrightarrow{CD}$=-2$\overrightarrow{a}$-13$\overrightarrow{b}$,求证:A,B,D三点共线.
(2)试确定k的值,使k$\overrightarrow{a}$+12$\overrightarrow{b}$和3$\overrightarrow{a}$+k$\overrightarrow{b}$共线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C的一般方程是x2+y2-4x=0;.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在矩形ABCD中,AB=2AD=2$\sqrt{2}$,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM;
(1)求证:AD⊥BM
(2)若点E是线段DB上的一点,问点E在何位置时,二面角E-AM-D的余弦值为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)的导函数f′(x)=x2-3x-10,则函数f(1-x)的单调递增区间是(  )
A.($\frac{3}{2}$,+∞)B.(-$\frac{1}{2}$,+∞)C.(-4,3)D.(-∞,-4)和(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若0<x<$\frac{π}{4},sin(\frac{π}{4}-x)=\frac{5}{13}$,则$\frac{cos2x}{{cos(\frac{π}{4}+x)}}$=(  )
A.$\frac{24}{13}$B.$-\frac{24}{13}$C.$\frac{10}{13}$D.$-\frac{10}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.数列{an}满足:an+1=2an+1,a1=1.
(Ⅰ)证明:数列{an+1}是等比数列,并求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{{{log}_2}({{a_n}+1})}}$,n∈N*,求证:b1•b2+b2•b3+…+bn•bn+1<1.

查看答案和解析>>

同步练习册答案